Graphical Interpretation of Convolution I

The convolution integral is

$$
g(t) * u(t)=\int_{-\infty}^{\infty} g(t-\tau) u(\tau) d \tau
$$

Plot $g(t-\tau)$ as a function of τ, for $g(t)$ and t as shown.

Graphical Interpretation of Convolution I

Plot $g(t-\tau)$ as a function of τ, for $g(t)$ and t as shown.

My confidence that I have the correct answer is:

1. 100%
2. 80%
3. 60%
4. 40%
5. 20%
6. 0%

Graphical Interpretation of Convolution I

The plot of $g(t-\tau)$ is given by

My answer

1. Was completely correct
2. Was mostly correct, with one or two minor errors
3. Had many errors
4. Was completely incorrect

Graphical Interpretation of Convolution II

The signals $g(t)$ and $u(t)$ are as plotted below. Plot $g(t-\tau) u(\tau)$ as a function of τ.

Graphical Interpretation of Convolution II

Plot $g(t-\tau) u(\tau)$ as a function of τ, for $g(t)$ and $u(t)$ as shown.

My confidence that I have the correct answer is:

1. 100%
2. 80%
3. 60%
4. 40%
5. 20%
6. 0%

Graphical Interpretation of Convolution II

The plot of $g(t-\tau)$ is given by

My answer

1. Was completely correct
2. Was mostly correct, with one or two minor errors
3. Had many errors
4. Was completely incorrect
