
Lecture M1 Slender (one dimensional) Structures
Reading: Crandall, Dahl and Lardner 3.1, 7.2

This semester we are going to utilize the principles we learnt last semester (i.e the 3 great
principles and their embodiment in the 15 continuum equations of elasticity) in order to
be able to analyze simple structural members.  These members are: Rods, Beams, Shafts
and Columns.  The key feature of all these structures is that one dimension is longer than
the others (i.e.  they are one dimensional).

Understanding how these structural members carry loads and undergo deformations will
also take us a step nearer being able to design and analyze structures typically found in
aerospace applications.  Slender wings behave much like beams, rockets for launch
vehicles carry axial compressive loads like columns, gas turbine engines and helicopter
rotors have shafts to transmit the torque between the components andspace structures
consist of trusses containing rods.  You should also be aware that real aerospace
structures are more complicated than these simple idealizations, but at the same time, a
good understanding of these idealizations is an important starting point for further
progress.

There is a basic logical set of steps that we will follow for each in turn.

1) We will make general modeling assumptions for the particular class of structural
member

In general these will be on:
a) Geometry
b) Loading/Stress State
c) Deformation/Strain State

2) We will make problem-specific modeling assumptions on the boundary conditions that
apply  (idealized supports, such as pins, clamps, rollers that we encountered with truss
structures last semester)

a.) On stresses
b.) On displacements

3) We will apply an appropriate solution method:

a) Exact/analytical (Unified, 16.20)
b Approximate (often numerical) (16.21). Such as energy methods (finite

elements, finite difference - use computers)

Let us see how this works:

Applied at specified
locations in structure



Rods (bars)
The first 1-D structure that we will analyzes is that of a rod (or bar), such as we
encountered when we analyzed trusses.  We are interested in analyzing for the stresses
and deflections in a rod.

First start with a working definition - from which we will derive our modeling
assumptions:

"A rod (or bar) is a structural member which is long and slender and is capable of
carrying load along its axis via elongation"

Modeling assumptions
a.) Geometry

L = length (x1 dimension)
b = width (x3 dimension)
h = thickness (x2 dimension)
Cross-section A (=bh)

assumption: L much greater than b, h (i.e it is a slender structural member)

(think about the implications of this - what does it imply about the magnitudes of stresses
and strains?)

b.) Loading - loaded in x1 direction only

Results in a number of assumptions on the boundary conditions



Similarly on the x2 face - no force is applied

† 

s 21 = s12 = 0
s 32 = s 23 = 0
s 22 = 0

on x1 face - take section perpendicular to x1

and 

c.) deformation

† 

s 31 = 0
s 32 = 0
s 33 = 0

s12 = 0
s13 = 0

s11dA = P
A
Ú

s11dx2dx3ÚÚ = P

fi s11 =
P
bh

=
P
A



Rod cross-section deforms uniformly (is this assumption justified? - yes, there are no
shear stresses, no changes in angle)

So much for modeling assumptions, Now let's apply governing equations and solve.

1. Equilibrium

† 

∂s mn
∂xn

+ fn = 0

only s11  is non-zero

† 

∂s11
∂x1

+ f1 = 0

† 

∂s11
∂x1

= 0 fi s11 = constant = P
A

Constitutive Laws
stress - strain equations:

† 

e11 = S1111s11
e22 = S2211s11
e33 = S3311s11

f1  = body force =0   for this case

So long as not fully
anisotropic - this is all
that is required

Compliance Form



† 

S1111 =
1

Ex

S2211 = -
n xy
Ex

S3311 = -
n xz
Ex

For isotropic material gives:  

† 

e11 =
1
E

s11

e22 =
-n
E

s11

e33 =
-n
E

s11

Now apply strain – displacement relations:

† 

emn =
1
2

∂um
∂xn

+
∂un
∂xm

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

e11 =
∂u1
∂x1

, e22 =
∂u2
∂x2

, e33 =
∂u3
∂x3

Hence (for isotropic material):

† 

s11
E

=
∂u1
∂x1

fi
P

AE
=

∂u1
∂x1

integration gives:

† 

u1 =
Px1
AE1

+ g(x2,x3)

Apply B. C. 

† 

u1 = 0  @ 

† 

x1 = 0 fi g(x2,x3) = 0

i.e. uniaxial extension only, fixed at root



 

† 

fi u1 =
Px1
AE

.

similarly 

† 

u2 =
-nP
AE

x2

† 

u3 =
-nP
AE

x3

check:

† 

e12 =
1
2

∂u1
∂x2

+
∂u2
∂x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 0 ÷

Assessment of assumptions

(Closer inspection reveals that our solutions are not exact.)

1) Cross section changes shape slightly.   A is not a constant.

If we solved the equations of elasticity simultaneously, we would account for this.
Solving them sequentially is ok so long as deformations are small.  (dA is second
order.)

2) At attachment point boundary conditions are different from those elsewhere on
the rod.

† 

u1 = 0, u2 = 0, u3 = 0
(Remember recitation example
last term – materials axially
loaded in a rigid container.  Also
problem set question about thin
adhesive joint.)



We deal with this by invoking St. Venant's principle:

"Remote from the boundary conditions internal stresses and deformations will be
insensitive to the exact form of the boundary condition."

And the boundary condition can be replaced by a statically equivalent condition
(equipollent) without loss of accuracy.

How far is remote?

This is the importance of the "long slender" wording of the rod definition.

This should have been all fairly obvious.  Next time we will start an equivalent process
for beams - which will require a little more thought.



M2 Statics of Beams
Reading: Crandall, Dahl and Lardner, 3.2-3.5, 3.6, 3.8

A beam is a structural member which is long and slender and is capable of carrying
bending loads.  I.e loads applied transverse to its long axis.

Obvious examples of aerospace interest are wings and other aerodynamic surfaces.  Lift
and weight act in a transverse direction to a long slender axis of the wing (think of glider
wings as our prototype beam).  Note, even a glider wing is not a pure beam  – it will have
to carry torsional loads (aerodynamic moments).

1.) Modeling assumptions

a.) Geometry, slender member, L>>b, h

At this stage, will assume arbitrary, symmetric cross-sections, i.e.:



b.) Loading
• Similar to rod (traction free surfaces) but applied loads can be in the z

direction

 c.) Deformation
• We will talk about this later

2.) Boundary conditions
As for rod, trusses

Pinned, simply supported Cantilever

Draw FBD, apply equilibrium to determine reactions.

3.) Governing equations
• Equations of elasticity

4.) Solution Method
•        Exact (exactly solve governing differential equations)
•        Approximate (use numerical solution)

But first need to look at how beams transmit load.

Internal Forces

Apply methods of sections to beam (also change coordinate system – to x, y, z –
consistent with CDL).  Method exactly as for trusses.  Cut structure at location where we
wish to find internal forces, apply equilibrium, obtain forces.  In the case of a beam, the
structure is continuous, rather than consisting of discrete bars, so we will find that the
internal forces (and moments) are, in general, a continuous function of position.

Distributed load



Internal forces

Opposite
directions on two
faces - equilibrium



(Note Crandall Dahl and Lardner use V = -S)

where M = Bending movement Beam
S = Shear force Bending "beam bar"
F = Axial force bar, rod

Also drawn as

Example of calculating shear force and bending moment distribution along a beam.

Example 1.  Cantilever beam.



Free Body Diagram (note moment reaction at root)

Equilibrium:

† 

H A = 0, VA = P, M A = -PL

Take cut at point X ,distance x from left hand end (root). 0< x < L.      Replace
the effect of the (discarded) right hand side of beam by an equivalent set of forces and
moments (M, S, F) which vary as a function of position, x.

 

Apply equilibrium

  

† 

Fx = 0Â Æ
+

F(x) = 0
Fz = 0 ↑+Â P - S(x) = 0 S(x) = P
M XÂ = 0 Pl + M (x) - Px = 0 M (x) = -P(l - x) +



Draw "sketches" - bending moment, shear force, loading diagrams

Axial Force diagram (zero everywhere in this case)

          
Shear Force Diagram

    
Bending moment diagram:



NOTE: At boundaries values go to reactions (moment at root, applied load at tip).

These representations are useful because they provide us with a visual indication of
where the internal forces on the beam are highest, which will play a role in determining
where failure might occur and how we should design the internal structure of the beam
(put more material where the forces are higher).

Lecture M3  Shear Forces and Bending Moments in Beams
continued: Example 2

Simply supported beam:

Free body diagram:

take cut at 0< x< L/2



Equilibrium ÆF(x) = 0

† 

↑
P
2

- S(x) = 0 fi S(x) =
P
2

M x = 0 fi -
P
2

x + M (x) = 0 fi M (x) =
Px
2

take cut at 

† 

L
2

< x < L

+

† 

0 < x < L



Apply equilibrium (moments about X):

† 

↑ F+ = 0 : P
2

Â - P - S(x) = 0 fi S(x) = -
P
2

M = 0 :Â -
P
2

x + P x -
L
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ + M (x) = 0

† 

M (x) = -
P
2

(x - L)

=
P
2

(L - x)

Draw Diagrams

          



Observations

• Shear is constant between point loads

• Bending moment varies linearly between discrete loads.

• Discontinuities occur in S and in slope of M at point of application of concentrated

loads.

• Change in shear equals amount of concentrated loads.

• Values of S & M (and F) go to values of reactions at boundaries

Distributed loads
e.g. gravity, pressure, inertial loading.  Can be uniform or varying with position.

  q(x) = q q(x) = q0 1-
x
L

Ê 
Ë 

ˆ 
¯ fi= q0 @ x = 0, = 0@ x = L

[  qo] = [force/length]

Deal with distributed loads in essentially the same way as for point loads.



Example:  Uniform distributed load, q (per unit length, applied to simply supported beam.

Free Body diagram:

Apply method of sections to obtain bending moments and shear forces:



Apply equilibrium:

↑ +
qL
2Â - Sx - q

0

x
Ú dx = 0

fi
qL
2

- qx = S(x)

MxÂ -
qLx

2
+ Mx + q

0

x
Ú xdx = 0

-
qL
2

+ Mx =
qx2

2
= 0 fi Mx =

qLx
2

-
qx2

2

Plot:

   

+



Observations

• Shear load varies linearity over constant distributed load.

• Moment varies quadratically (parabolically) over region where distributed load

applied

• This suggests a relationship between M & S & P



General Relation Between q, S, M

Consider a beam under some arbitrary variable, distributed loading q(x):

Consider an infinitesimal element, length, dx, allow F, S, M to vary across element:

Now use equilibrium, replace partial derivatives by regular derivatives (F, S, M varying
only in x).

† 

FxÂ = 0Æ
+

- F + F +
dF
dx

dx = 0 dF
dx

= 0

† 

M +
∂M
∂x

dx

† 

S +
∂S
∂x

dx

† 

F +
∂F
∂x

dx



† 

FzÂ = 0 ↑+ S - S -
dS
dx

dx + q(x)dx = 0

dS
dx

= q(x)

† 

M0Â - / M + / M + dM
dx

dx - S dx
2

- (S +
dS
dx

dx) dx
2

= 0

note: q(x) has no net moment about O.
dM
dx

dx - Sdx +
1
2

dS
dx

(dx)2 = 0

but (dx)2 is a higher order (small) term

fi
dM
dx

= S

Summarizing:

                 

† 

dF
dx

= 0 (unless a bar)

dS
dx

= q

dM
dx

= S (and d2M
dx2 = q)

Useful check, useful to automate process

Superposition

So long as the beam material is elastic and deformations are small all the structural
problems are linear - can use superposition (as for trusses)

+



Lecture M4: Simple Beam Theory
Reading: Crandall, Dahl and Lardner 7.2-7.6

We have looked at the statics of a beam, seen that loads are transmitted by internal
forces:  axial forces, shear forces and bending moments.

Now look at how these forces imply stresses, strains, and deflections.

Recall model assumptions: slenderness

             
Geometry

† 

L >> h,b
Loads

Leads to assumptions on stresses

Load in x - z plane Æ

† 

s yy = s xy = s yz = 0
Also L >> h,b implies s xx ,s xz >> s zz

General, symmetric, cross section



Consider moment equilibrium of a cross section of a beam loaded by some distributed

stress szz, which is reacted by axial stresses on the cross section, sxx

† 

M X = 0 = s zz L - s xxÂ h fi
s zz
s xx

ª
h
L

ª 0

i.e. geometry of beam implies sxx >> szz

Assumptions on Deformations:
The key to simple beam theory is the Bernoulli - Euler hypotheses (1750)
"Plane sections remain plane and perpendicular to the mid-plane after deformation."

It turns out that this is not really an assumption at all but a geometric necessity, at least

for the case of pure bending.

To see what the implications are of this, consider a beam element which undergoes

transverse (bending)
deformation.



w= deflection of midplane/midline (function of x only)

Obtain deflection in x-direction, displacement u of point k to K, defined by rotation

† 

f  .

Note, key assumption, "plane sections remain plane"



axial displacement, u, of an arbitrary point on the cross-section arises from rotation of

cross, sections
u= -z tanf

Note, negative sign here due to use of consistent definitions of positive directions for w, x
and dw/dx.

If deformations/angles are small 

† 

tanq ª q

† 

f ª
dw
dx

fi u = -z dw
dx

(1)

Hence obtain deformation field

† 

u x,y,z( ) = -z dw
dx

v x,y,z( ) = 0 nothing happening in y direction
w x,y,z( ) = w x( )

Hence we can obtain distributions of strain. (compatible with deformation).  In absence
of deformations in transverse directions partial derivatives can be replaced by regular

derivatives, i.e. 

† 

∂ _
∂ _

≡
d _
d _

.   Hence.

† 

exx =
∂u
∂x

= -z d2w
dx2 (3)

eyy =
∂v
∂y

= 0, ezz =
∂w
∂z

= 0

g xy = 2e12 =
∂u
∂y

+
∂v
∂x

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 0, g yz =

∂v
∂z

+
∂w
∂y

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 0

g xz =
∂u
∂z

+
∂w
∂x

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = -

dw
dx

+
dw
dx

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 0

If no shear - consistent with B-E assumption of plane sections remaining plane.

for constant bending moment:   dM
dx

= S = 0 (will revisit for S ≠ 0)

Deflection out of original plane
i.e., cross sections remain rigid (2)



Next use stress - strain (assume orthotropic - for generality)

† 

exx =
s xx
Ex

eyy = -n xy
s xx
Ex

ezz = -n xz
s xx
Ex

g xy =
t xy
Gxy

g yz =
t yz
Gyz

g xz =
t xz
Gxz

The inconsistency on the shear stress/strain arises from the plane/sections remain plane

assumption.  Does not strictly apply when there is varying bending moment (and hence

non-zero shear force).  However, displacements due to 

† 

g xz  are very small compared to

those due to 

† 

exx , and therefore negligible.

Finally apply equilibrium:

 ∂smn
∂xm

+ fm = 0

∂sxx
∂x

+
∂syz
∂y

+
∂szx
∂z

= 0 fi
∂sxx

∂x
+

∂szx
∂z

= 0

∂sxy
∂x

+
∂syy

∂y
+

∂szy
∂z

= 0 fi 0 = 0

† 

∂s xz
∂x

+
∂s yz

∂y +
∂s zz

∂y
= 0 fi

∂s xz
∂z

= 0

† 

5 equations, 5 unknowns : w,u,exx ,s xx ,s xz
To be continued…

Note inconsistency -

† 

g xz = 0, t xz ≠ 0 (shear
forces are non zero)

(5)

(4)


