
F13 – Lecture Notes

1. Stagnation Quantities

2. Introduction to Shock Waves

Reading: Anderson 7.5, 7.6

Stagnation Quantities

Adiabatic stagnation processes

An adiabatic stagnation process is one which brings a moving fluid element to rest adiabat-
ically (without heat addition or removal). The figure a fluid element at station 1 in some
flow being brought to rest by two hypothetical adiabatic processes. Process A is done by
placing a blunt object in the flow, such that the fluid element reaches the stagnation point,
where V = 0. Process B lets the fluid element flow into a large insulated chamber where it
will mix with the stationary fluid there and thus come to rest.
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The changes of h and V for either process are governed by the total enthalpy relation

ho ≡ h +
1

2
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derived previously. Therefore, we have
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2
V 2
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V 2

stag = hstag

We see that at the end of the stagnation process, hstag is equal to the total enthalpy ho1
at

the beginning. For this reason, the terms stagnation enthalpy and total enthalpy are largely
synonymous, although they are two distinct concepts.

The total enthalpy ho on the streamline can therefore be measured by setting up an actual
stagnation process, typically with a small obstruction like a small-scale version of Process A,
and measuring the resulting temperature Tstag. One can then calculate ho = hstag = cpTstag.

Isentropic stagnation processes

An isentropic stagnation process, is one which brings a moving fluid element to rest adiabat-
ically and reversibly (without friction). Of the above figures, only Process A is of this type.
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In addition to the total enthalpy relation

ho1
= hstag

we now also have the isentropic relations between station 1 and the stagnation point.
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Substituting hstag = ho1
, and h1 = ho1

−
1
2
V 2

1 , we can now define the total density and total
pressure at station 1 in terms of station 1 quantities.
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(
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2ho1
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Relations along streamline

Any point along a streamline can be subjected to a hypothetical adiabatic or isentropic
stagnation process in order to define the local total quantities ho, ρo, and po. Whether any
two such points on a streamline have the same total quantities depends on whether a non-
adiabatic or non-isentropic process occurred on the streamline between them. The figure
shows four possible situations, resulting in equalities or inequalities between the two points
on the streamline. The “?” relation in the non-isentropic and adiabatic cases indicates
that the relation is unknown without additional information about the friction or heating,
respectively.
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For the adiabatic case, a unique total enthalpy ho can be assigned to the whole streamline.
Then for any point on the streamline we have

h = ho −

1

2
V 2 (1)
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For the more restrictive isentropic case, a unique total density ρo and total pressure po can
also be assigned to the whole streamline, which gives

ρ = ρo

(

1 −

V 2

2ho

)1/(γ−1)

(2)

p = po

(

1 −

V 2

2ho

)γ/(γ−1)

(3)

These equations are in effect a compressible-flow replacement for the incompressible Bernoulli
equation.

It’s useful to note that only two of the three above equations are independent. Any one of
them could be removed and replaced by the state equation.

p =
γ − 1

γ
ρ h

Introduction to Shock Waves

Wave features

Compressibility of a fluid allows the existence of waves, which are variations in ρ, p, and h

(or temperature T ), which self-propagate through the fluid at some speed. Ordinary sound
consists of very small variations which move at the speed of sound a, while a shock wave has
a finite variation in flow quantities and moves at a larger speed Vs > a. The figure illustrates
the difference in the two types of waves. The shock wave has a flow velocity behind it equal
to the piston speed Vp, but the shock itself advances into the still air at a much higher speed
Vs > a. The air properties ρ, p, and h are all increased behind the shock.
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Shock Frame

We now examine the piston shock flow in the frame of the shock, by shifting all the velocities
by +Vs. In this frame the flow is steady, and is the most convenient frame for analyzing the
shock. The upstream and downstream quantities are usually denoted by the subscripts ()1

and ()2, respectively. The static air properties ρ, p, and h are of course unchanged by this
frame change.
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Downstream-Air Frame

An intuitive understanding of a shock wave is perhaps best obtained by looking at the
situation yet again, in the downstream-air frame. The shock now propagates against the
oncoming upstream flow. This situation is closely analogous to how a traffic blockage prop-
agates backward against the oncoming traffic.
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Dissipation in Shock

The flow passing through a shock wave undergoes an adiabatic process, since there is no heat
being supplied (there’s nothing there to provide heat!). But because a shock wave is typically
very thin — less than 1 micron at sea level — there are strong viscous forces acting on the
fluid passing through it, so the process is irreversible. Therefore, the stagnation quantities
have the following relations across a shock wave:

ho1
= ho2

ρo1
> ρo2

po1
> po2

A more detailed analysis will quantify the inequalities.
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