
F11 – Lecture Notes 
1. Vorticity and Strain Rate 

2. Circulation 

Reading: Anderson 2.12, 2.13 

Vorticity and Strain Rate 
Fluid element behavior 
When previously examining fluid motion, we considered only the changing position and 
velocity of a fluid element. Now we will take a closer look, and examine the element’s 
changing shape and orientation. 

Consider a moving fluid element which is initially rectangular, as shown in the figure. If 
the velocity varies significantly across the extent of the element, its corners will not move in 
unison, and the element will rotate and become distorted. 
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In general, the edges of the element can undergo some combination of tilting and stretching . 
For now we will consider only the tilting motions, because this has by far the greatest 
implications for aerodynamics. 

The figure below on the right shows two particular types of element-side tilting motions. If 
adjacent sides tilt equally and in the same direction, we have pure rotation. If the adjacent 
sides tilt equally and in opposite directions, we have pure shearing motion. 

Both of these motions have strong implications. The absense of rotation will lead to a great 
simplification in the equations of fluid motion. Shearing together with fluid viscosity produce 
shear stresses, which are responsible for phenomena like drag and flow separation. 
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Side tilting analysis 
Consider the 2-D element in the xy plane, at time t, and again at time t + �t. 
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Points A and B have an x-velocity which differs by �u/�y dy. Over the time interval �t 
they will then have a difference in x-displacements equal to 

�u 
�xB − �xA = dy �t 

�y 

and the associated angle change of side AB is 

�xB − �xA �u 
−�∂1 = = �t 

dy �y 

assuming small angles. A positive angle is defined counterclockwise. We now define a time 
rate of change of this angle as follows. 

d∂1 �∂1 �u 
= lim = − 

dt �t�0 �t �y 

Similar analysis of the angle rate of side AC gives 

d∂2 �v 
= 

dt �x 

Vorticity 
The angular velocity of the element, about the z axis in this case, is defined as the average 
angular velocity of sides AB and AC. 
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The same analysis in the xz and yz planes will give a 3-D element’s angular velocities �y 

and �x. 
� � � � 

1 �u �w 1 �w �v 
�y = − , �x = − 

2 �z �x 2 �y �z 
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These three angular velocities are the components of the angular velocity vector . 

θ ˆ� = �xı̂ + �y ξ̂ + �zk 

However, since 2θ� appears most frequently, it is convenient to define the vorticity vector �θ

as simply twice θ�. 
� � � � � � 

θ� = 2θ� = 
�w 

− 
�v 

ı̂ + 
�u 

− 
�w 

ξ̂ + 
�v 

− 
�u 

k̂ 
�y �z �z �x �x �y 

The components of the vorticity vector are recognized as the definitions of the curl of θV , 
hence we have 

� = �× θθ V 

Two types of flow can now be defined: 

1) Rotational flow. Here �× θ �V = 0 at every point in the flow. The fluid elements move and 
deform, and also rotate. 

2) Irrotational flow. Here � × θV = 0 at every point in the flow. The fluid elements move 
and deform, but do not rotate.


The figure contrasts the two types of flow.


Rotational flows Irrotational flows 

Strain rate 
Using the same element-side angles �∂1, �∂2, we can define the strain of the fluid element.


strain = �∂2 − �∂1


This is the same as the strain used in solid mechanics. Here, we are more interested in the

strain rate, which is then simply 

d(strain) d�∂2 d�∂1 �v �u 
� ωxy = − = + 

dt dt dt �x �u 

Similarly, the strain rates in the yz and zx planes are 

�w �v �u �w 
ωyz = 

�y 
+ 

�z 
, ωzx = 

�z 
+ 

�x 

Circulation 

3 



� 

� 
 

�� 

Consider a closed curve C in a velocity field as shown in the figure on the left. The instan
taneous circulation around curve C is defined by 

θ� � − V · dθs 
C 

In 2-D, a line integral is counterclockwise by convention. But aerodynamicists like to define 
circulation as positive clockwise, hence the minus sign. 
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Circulation is closely linked to the vorticity in the flowfield. By Stokes’s Theorem, 
� �� �� 

θ θ ˆ ˆ� � − V · dθs = − �× V · n dA = − �θ · n dA 
C S S 

where the integral is over the area A in the interior of C, shown in the above figure on the 
n is the unit vector normal to this area. In the 2-D xy plane, we have �θ = �ˆright, and ˆ k and 

ˆ ˆn = k, in which case we have a simpler scalar form of the area integral. 

� = − � dA (in 2-D) 
S 

From this integral one can interpret the vorticity as –circulation per area, or 

d� 
� = − 

dA 

Irrotational flows, for which � = 0 by definition, therefore have � = 0 about any contour 
inside the flowfield. Aerodynamic flows are typically of this type. The only restriction on 
this general principle is that the contour must be reducible to a point while staying inside 
the flowfield. A contours which contains a lifting airfoil, for example, is not reducible, and 
will in general have a nonzero circulation. 

� = 0 

� > 0 
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