Consider the signal
\[y(t) = w(t)u(t) \]
where
\[w(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) \]
is the carrier signal, and \(u(t) \) is the modulating signal. \(u(t) \) has spectrum (Fourier transform) as shown below:

![Spectrum Graph]

The sample rate, \(f_s = \frac{1}{T} \), satisfies the relation
\[f_s > 2f_b \]
Sketch the spectrum of \(y(t) \) on a 3 x 5 card.
Spectrum of Sampled Signal

Consider the signal

\[y(t) = w(t)u(t) \]

where

\[w(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) \]

is the carrier signal, and \(u(t) \) is the modulating signal. The sample rate, \(f_s = \frac{1}{T} \), satisfies the relation

\[f_s > 2f_b \]

Sketch the spectrum of \(y(t) \) on a \(3 \times 5 \) card. My confidence that I have the correct answer is:

1. 100%
2. 80%
3. 60%
4. 40%
5. 20%
6. 0%
The transform of $y(t)$ is given by:

$$Y(f)$$

My answer

1. Was completely correct
2. Was mostly correct, with one or two minor errors
3. Had many errors
4. Was completely incorrect
A signal $x(t) = \cos$ The transform of $y(t)$ is given by:

My answer

1. Was completely correct
2. Was mostly correct, with one or two minor errors
3. Had many errors
4. Was completely incorrect