Spectrum of Sampled Signal

Consider the signal

$$y(t) = w(t)u(t)$$

where

$$w(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

is the carrier signal, and u(t) is the modulating signal. u(t) has spectrum (Fourier transform) as shown below:

The sample rate, $f_s = \frac{1}{T}$, satisifies the relation

$$f_s > 2f_b$$

Sketch the spectrum of y(t) on a 3×5 card.

Spectrum of Sampled Signal

Consider the signal

$$y(t) = w(t)u(t)$$

where

$$w(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

is the carrier signal, and u(t) is the modulating signal. The sample rate, $f_s = \frac{1}{T}$, satisifies the relation

$$f_s > 2f_b$$

Sketch the spectrum of y(t) on a 3×5 card. My confidence that I have the correct answer is:

- 1. 100%
- 2. 80%
- 3. 60%
- 4. 40%
- 5. 20%
- 6. 0%

Spectrum of Sampled Signal

The transform of y(t) is given by:

My answer

- 1. Was completely correct
- 2. Was mostly correct, with one or two minor errors
- 3. Had many errors
- 4. Was completely incorrect

Spectrum of Sampled Cosine

A signal $x(t) = \cos$ The transform of y(t) is given by:

My answer

- 1. Was completely correct
- 2. Was mostly correct, with one or two minor errors
- 3. Had many errors
- 4. Was completely incorrect