
Linked Lists

In this representation, the structure does not necessarily reflect the logical organization.
Items may appear in any order. The logical organization is provided through pointers.
Each item in the list, called a node, consists of a data portion containing the item
information and a pointer, which contains the location (address) of the next item in the
logical sequence that has to be maintained.

As with all ADT’s we can define a set of operations on linked lists

Operation Description
Initialize Initialize internal structure; create an empty list
IsEmpty True iff the list has no elements
Insert Insert an Element into the list
Remove Remove an element from the list
Empty Delete all elements in the list and free the memory
Display Display all elements in the list

Access Types

In so far, we have only seen static data types. For instance, the size of the arrays has to be
declared ahead of time. If all the locations are not used, then the memory is wasted. If the
size of the array is too small, then the array gets filled and the programs capability is
limited.

Dynamic memory allocation is a means of providing more memory when it is needed.
The new construct is used to allocate memory.

my_access_variable := new my_access_type;

The new operation takes memory from a storage pool (often called the heap) and
reserves it for use of the variable my_access_variable. The reference to the memory
location is stored in my_access_variable.

type Int_Ptr is access Integer;

P : Int_Ptr;

Issues with Access Types:
• 	 Aliasing: referencing the same object with multiple names

• 	 Dangling reference: Referencing a deallocated object by another name leads to
anomalous behavior. There is no guarantee on what will happen because the
released memory may have been reallocated for some other purpose.

• 	 Pointer dropping: disassociating an object from all names even when it is valid.
The major drawback that arises from dropping a pointer is that it cannot be
referenced again or be explicitly deallocated. A dropped pointer depends on an
implicit memory manager for reclamation of space. An Ada environment is not
required to provide deallocation of dynamically allocated objects.

Whenever you use dynamic allocation, it is possible to run out of space. Ada provides a
facility (a length clause) for requesting the size of the pool of allocation space at compile
time. However, you can still run out at run time, so you can create an exception handler
for the Storage_Error exception.

Singly Linked List

A singly linked list of nodes (records) with fields: element and next, can be visualized as
shown below:

We specify a node as follows:

Declarations

type Listnode;

type Listptr is access Listnode; --we define an access type or pointer to the node

type Listnode is record

Element : Elementtype; --we define one field in the record to be of type
element
Next : Listptr; --we define the other field as a pointer to the next node

end record;

type List is record

Head : Listptr; -- we define the head to be of type record.

end record;

Initialize

Preconditions : none
Post-Conditions: List with head pointer set to null.

Pseudo-Code :
List.Head := Null;

Return List to the user

IsEmpty

Preconditions : none
Post-Conditions: Returns a Boolean variable determining if the list is empty.

Pseudo-Code :
If List.Head = Null then

Return True
Else

Return False

Insert

The insertion operation can take place anywhere in the list. We will list the pseudo code
for inserting at the beginning and the end of the list.

Food for thought: Is it hard to insert anywhere in the list?

Insert at the beginning of the list

Preconditions : Element to be inserted and the List
Post-Conditions: List with element inserted

Pseudo-Code :
Create a new node and store the pointer to the node in NodePtr
Set NodePtr.Element to Element
Set NodePtr.Next to List.Head
List.Head is set to NodePtr
Return List to the user

Insert at the end of the list

Preconditions : Element to be inserted and the List
Post-Conditions: List with element inserted

Pseudo-Code :
Create a new node and store the pointer to the node in NodePtr
Set NodePtr.Element to Element
Set NodePtr.Next to Null
If the list is empty then

List.Head := NodePtr

Else
Create a temporary pointer called Temp
Set Temp to List.Head
Traverse to the end of the list as follows:

While Temp.Next /= Null

Temp:= Temp.Next

Temp.Next := NodePtr

Return List to the user

Removal
The removal operation can take place anywhere in the list. We will list the pseudo code
for removing from the beginning and the end of the list.

Food for thought: Is it hard to remove from anywhere in the list?

Removal from the beginning of the list

Preconditions : Non-Empty List
Post-Conditions: List with the first element removed, and the element removed

Pseudo-Code :
If the list is empty then

Display cannot delete from an empty list
Else

Create a temporary pointer called Temp
Set Temp to List.Head
If Temp.Next = Null then

List.Head := Null
Else

List.Head := Temp.Next

Element:= Temp.Element

Free Temp

Return List and Element to the user

Remove from the end of the list

Preconditions : A non-empty List
Post-Conditions: List with element removed from the end and the element removed

Pseudo-Code :
If the list is empty then

Display cannot delete from an empty list

Else
Create two temporary pointers called Temp and Prev
Set Temp to List.Head
Set Prev to null
Traverse to the end of the list as follows:

While Temp.Next /= Null
Prev :=Temp
Temp:= Temp.Next

If Prev = Null then
List.Head:= Null

Else
Prev.Next := Null

Element := Temp.Element
Free Temp

Return List and Element to the user

Empty

Preconditions : none
Post-Conditions: frees all the allocated nodes in the list.

Pseudo-Code :
Create a temporary pointer called Temp
While List.Head /= Null loop

Temp := List.Head
List.Head := Temp.Next
Free Temp

Display

Preconditions : none
Post-Conditions: displays all the elements in the list.

Pseudo-Code :
Create a temporary pointer called Temp
Temp := List.Head
While Temp /= Null loop

Display Temp.Element
Temp:= Temp.Next

Jayakanth Srinivasan
I. Kristina Lundqvist

