
Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Recitation 1

Some suggestions …

• Problem solving

example)

• If-then-else statements
• Yesterdays PRS question (robot) / Truth

table
• Binary, Hex, ASCII
•
• String manipulation

Sept 11 2003

– Feldman Case Study Format (the bank

Little/Big Endian

Case Study Format (p19)

1) Problem Specification

–
amount of money (positive integer only) in a bank account.

than zero) to be withdrawn.

–
in the account, by more than $50, the program is to display
a message that the transaction is refused, and the

–
equal to the amount in the account, the transaction is

–
in the account, by up to $50, the program is to accept the
transaction and display the new balance, with a warning
that the account is overdrawn.

1. Problem specification

2. Analysis

3. Design

4. Test plan

5. Implementation

6. Testing

A program is required which will ask the user for the

It will then ask for the amount of money (integers greater

If the amount to be withdrawn is greater than the amount

unchanged balance is displayed.

If the amount of money to be withdrawn is less than or

accepted and the new balance in the account is displayed.

If the amount to be withdrawn is greater than the amount

2) Analysis
•

– 100
Enter the withdrawal 50
Accepted. Balance is 50

76
Enter the withdrawal 150
Refused! Balance is 76

50
Enter the withdrawal 75
Overdraft! Balance is -25

Determine what you are asked to do:

1. Interact with user via text interface

Enter balance of the account

Enter balance of the account

Enter balance of the account

2) Analysis
• Determine what you are asked to do:

2. Act differently depending on balance in
account after withdrawn:

Balance after Action
withdrawal
>= 0 Accept withdrawal

>= -50 and < 0 Overdraft

< -50 Refuse withdrawal

2) Analysis

Overdraft_Limit : constant Integer := -50;
Zero : constant Integer := 0;

Balance

3) Design

•
outputs, we can now list the steps
necessary to solve the problem

•

– >= zero
– >= -50 and < 0
– or < -50 ?

• Data Requirements and Formulas
– Problem Constant

– Problem inputs
-- balance on account

Withdrawal -- amount to withdraw from account

– Problem outputs
Resulting_Balance -- Balance after withdrawal

– Formulas or relations
Resulting balance = Balance – withdrawal

Having listed the problem inputs and

The Algorithm -- First try:
1. Get balance and withdrawal
2. Calculate resulting balance
3. Is new balance

3) Design

•

then

new balance between zero and overdraft
limit

else

4) Test Plan

The Algorithm -- Refinement:

1. Get balance and withdrawal
1. Get balance
2. Get withdrawal

2. Calculate resulting balance
1. New balance = old balance – withdrawal

3. If new balance is >= zero

1. Indicate transaction accepted
else if

2. Indicate overdraft is used

3. Indicate transaction rejected

• Cases that need to be tested are:
– Balance = -40

• Withdrawal = 5, 10, 11

– Balance = 0
• Withdrawal = 5, 50, 51

– Balance = 20
• Withdrawal = 20, 70, 71

5) Implementation

NULL; statement

comments

• Start with a basic Ada framework
• To write the final program, you must:

– Convert the refined steps to Ada
– Write Ada code for the unrefined steps
– Add necessary context clauses for I/O
– Delete the

– Remove the step numbers from the

• Bank_Framework.adb

6) Testing

Balance Withdrawal Result
-40 5 OK
-40 10 OK
-40 11 OK
0 5
0 50
0 51
20 20
20 70
20 71

BACK

if-then-else Statements

– statement_before;
if test then
statement(s)_1;

else
statement(s)_2;

;
statement_after;

statement_before

test

statement(s)_1

statement_after

truefalse

statement(s)_2

Multiple Selections

– statement_before;
if test_1 then

statement(s)_1;
elsif test_2 then

statement(s)_2;
else

statement(s)_3;
;

statement_after;

BACK

• Statement form

end if

• Statement semantics

• Statement form

end if

Yesterdays Robbie Event

robot behave?
1.Go back once and turn left
2.Turn right twice
3.Go back twice the distance and turn right

1Control
0Driving_Right
1Driving_Left

1Hit_Left_Bumper
ValueVariable Name

• For the given input, which way will the

1 Hit_Right_Bumper

if (Hit_Left_Bumper = 1) and (Hit_Right_Bumper = 1) then
if (Control = 1) then

go back twice the distance
S_1 set Control to 0;

else
go back normal distanceS_2
set Control to 1;

end if;
end if;

if (Control = 1) then
if (Driving_Left = 1) then

turn left again;
Driving_Left = 0;

else
turn right twice;
set Driving_Right to 1;

end if;
else

if (Driving_Left = 0) then
turn left;
set Driving_Left to 1;

else
turn right;
set Driving_Right to 1;

end if;
end if;

test_1 test_2 test_3 test_1
and

test_2

s_1 s_2

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

if (Hit_Left_Bumper = 1) and (Hit_Right_Bumper = 1) then
if (Control = 1) then

go back twice the distance
S_1 set Control to 0;

else
go back normal distanceS_2
set Control to 1;

end if;
end if;

if (Control = 1) then
if (Driving_Left = 1) then

turn left again;
Driving_Left = 0;

else
turn right twice;
set Driving_Right to 1;

end if;
else

if (Driving_Left = 0) then
turn left;
set Driving_Left to 1;

else
turn right;
set Driving_Right to 1;

end if;
end if;

test_1 test_2 test_3 test_1
and

test_2

s_1 s_2

F F F F
F F T F
F T F F
F T T F
T F F F
T F T F
T T F T
T T T T *

BACK

Little/Big-Endian

• 00000000 00000000 00000100 00000001

Address Big-Endian
repr. of 1025

Little-Endian
repr. of 1025

00 0000 0000 0000 0001

01 0000 0000 0000 0100

02 0000 0100 0000 0000

03 0000 0001 0000 0000

BACK

BACKASCII

ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol

0 NUL 48 30 96 60
1 SOH 49 31 97 61
2 50 32

`
a
b98 62

e
f
g
h
i
j
k
l

m
n
o

3 ETX 51 33 99 63
4 EOT 52 34 100 64
5 ENQ 53 35 101 65
6 ACK … 54 36 … 102 66
7 BEL 55 37 103 67
8 BS 56 38 104 68
9 TAB 57 39 105 69

10 LF 58 3A 106 6A

11 VT 59 3B 107 6B

12 FF 60 3C 108 6C

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

13 CR 61 3D 109 6D

14 SO 62 3E 110 6E

15 SI 63 3F 111 6F

01101000 01100101 01101100 01101100 01101111

Data types

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

STX
c
d

String type

• Used when representing a sequence of
characters as a single unit of data
– How many characters?
– String (1 .. Maxlen);

– Example:

Max_Str_Length : constant := 26;
Alphabet, Response:String(1..Max_Str_Length);

String Operations

Alphabet := “abcdefghijklmnopqrstuvwxyz”
Response := Alphabet;

Alphabet(1..3) & Alphabet(26..26)

Alphabet & “.”);

Sub-strings

– alphabet(10) 'j'
alphabet(17) 'q'

– alphabet(20..23) "tuvw"
alphabet(4..9) "defghi"

– response(1..4) := "FRED";
response "FREDefghijklmnopqrstuvwxyz"

• Assignment

• Concatenation (&)

Put(Item => “The alphabet is “ &

• Individual character: specify position

• Slice: specify range of positions

• Assign to compatible slice

String I/O

•Get(Item => A_String);

•Get_Line(Item => A_String, Last => N);

BACK

• Text_Io
– Output: Put, Put_Line
– Get

• Exact length needed

– Get_Line
• Variable length accepted
• Returns string and length

