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Fluids – Lecture 1 Notes 

1. Formation of Lifting Flow 

Reading: Anderson 4.5 – 4.6 

Formation of Lifting Flow 

Conservation of Circulation — Kelvin’s Theorem 

The circulation about any closed circuit is defined to be 

~ ˆΓ ≡ − V · d~s = − ξ~ · n dA 

where d~s is an arc length element of the circuit, and ~V is the local flow velocity. The 
equivalent vorticity area integral form follows from Stokes Theorem. In 2-D, this second 
form is ��

Γ = − ξ dA (In 2-D) 

To investigate the formation of a lifting flow about an airfoil, we now consider the circulation 
Γ about a circuit demarked by fluid elements which are drifting with the flow (a fine smoke 
ring would constitute such a circuit). Because both the shape of the circuit and the velocities 

Vds ξ 
dA 

seen by the circuit will in general change in time, there is the possibility that Γ(t) will change 
in time as well. The rate of change of this circulation is 

dΓ d D 
= − ξ dA = − (ξ dA)

dt dt Dt 

where the substantial derivative has been invoked because we are seeking a time rate of 
change in a frame moving with the fluid. For low speed 2-D flows where density is effectively 
constant, the area dA of a fluid element cannot change because of conservation of mass. 
Hence we have 

dΓ Dξ 
= − dA 

dt Dt 

But by the 2-D Helmholtz Theorem, 
Dξ 

= 0 
Dt 

which then leads to Kelvin’s Circulation Theorem . 

dΓ 
= 0 (for a drifting circuit) 

dt 

The Starting Vortex 

Consider an airfoil initially at rest. Since ~V = 0, the circulation Γ1 about the circuit around 
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the airfoil must be zero as well. When the airfoil is set into motion, it will develop a nonzero 
circulation, Γ4 in the figure. Experimental flow observations show that a starting vortex of 
circulation Γ3 is shed from the trailing edge. This shedding is associated with the Kutta 
condition being satisfied for every instant in time. The vortex is swept downstream as seen 
by an observer on the airfoil. 

By construction of the circuits, we have 

Γ2 = Γ3 + Γ4 

and by Kelvin’s Theorem this overall Γ2 must be the same as the outer circuit’s Γ1 before 
the airfoil started to move. 

Γ2 = Γ1 = 0 

Therefore, the airfoil and the starting vortex must have equal and opposite circulations. 

Γ3 = −Γ4 

It’s important to note that circulation about any circuit is the same to any non-rotating 
observer. Hence, Kelvin’s Theorem applies to in both stationary and moving frames of refer­
ence. The airfoil and the starting vortex also have the same equal and opposite circulations 

ΓΓ −Γ −Γ 

in either frame. 

Observer stationary Observer moving with airfoil 

Established Steady Flow 

A long time after the start of motion, the starting vortex is very far downstream behind the 
airfoil, and has no influence on the flowfield about the airfoil. We therefore disregard the 
shed starting vortex when considering any steady 2-D airfoil flow. Shed vortices must still 
be considered when analyzing unsteady airfoil flows. These are beyond scope here. 
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Isolated 2−D airfoil flow 
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