
Fluids – Lecture 13 Notes 

1. Bernoulli Equation 

2. Uses of Bernoulli Equation 

Reading: Anderson 3.2, 3.3 

Bernoulli Equation 

Derivation – 1-D case 

The 1-D momentum equation, which is Newton’s Second Law applied to fluid flow, is written 
as follows. 

∂u ∂u ∂p 
ρ + ρu = − + ρgx

∂t ∂x ∂x 

We now make the following assumptions about the flow. 

• Steady flow: ∂/∂t = 0 

• Negligible gravity: ρgx ≃ 0 

• Negligible viscous forces: (F x)viscous ≃ 0 

• Low-speed flow: ρ is constant 

+ (F x)viscous 

These reduce the momentum equation to the following simpler form, which can be immedi
ately integrated. 

du dp 
ρu + = 0 

dx dx 
1 d(u2) dp 

ρ + = 0 
2 dx dx 

1 
ρ u 2 + p = constant ≡ po

2 

p

The final result is the one-dimensional Bernoulli Equation, which uniquely relates velocity 
and pressure if the simplifying assumptions listed above are valid. The constant of integration 

o is called the stagnation pressure, or equivalently the total pressure, and is typically set by 
known upstream conditions. 

Derivation – 2-D case 

The 2-D momentum equations are 

∂u ∂u ∂u ∂p 
ρ + ρu + ρv = − + ρgx + (F x)viscous 

∂t ∂x ∂y ∂x 
∂v ∂v ∂v ∂p 

ρ + ρu + ρv = − + ρgy + (F y)viscous 
∂t ∂x ∂y ∂y 

Making the same assumptions as before, these simplify to the following. 

∂u ∂u ∂p 
ρu + ρv + = 0 (1) 

∂x ∂y ∂x 
∂v ∂v ∂p 

ρu + ρv + = 0 (2) 
∂x ∂y ∂y 
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Before these can be integrated, we must first restrict ourselves only to flowfield variations 
along a streamline. Consider an incremental distance ds along the streamline, with projec
tions dx and dy in the two axis directions. The speed V likewise has projections u and 
v. 

y	 p + dp 

dx 

dy 

u 

v 

p 
u 
v 

u + du 
v + dv V 

streamline 

x 

Along the streamline, we have 
dy v 

= 
dx u 

or 
u dy = v dx (3) 

We multiply the x-momentum equation (1) by dx, use relation (3) to replace v dx by u dy, 
and combine the u-derivative terms into a du differential. 

∂u ∂u ∂p 
ρu dx + ρv dx + dx = 0 

∂x ∂y ∂x 

∂u ∂u	 ∂p 
ρu dx + dy + dx = 0 

∂x ∂y	 ∂x 

∂p 
ρu du + dx =	 0 

∂x 
� � ∂p 1 

ρ d u 2 + dx = 0	 (4) 
2 ∂x 

We multiply the y-momentum equation (2) by dy, and performing a similar manipulation, 
we get 

∂v ∂v ∂p 
ρu dy + ρv dy + dy = 0 

∂x ∂y ∂y 

∂v ∂v	 ∂p 
ρv dx + dy + dy = 0 

∂x ∂y	 ∂y 

∂p 
ρv dv + dy =	 0 

∂y 
� � ∂p 1 

ρ d v 2 + dy = 0	 (5) 
2 ∂y 

Finally, we add equations (4) and (5), giving 

1 � � ∂p ∂p 
2ρ d u 2 + v + dx + dy = 0 

2	 ∂x ∂y 
1 
ρ d u 2 + v 2 + dp	 = 0 

2 
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which integrates into the general Bernoulli equation


1 
ρ V 2 + p = constant ≡ po (along a streamline) (6) 

2 

where V 2 = u2 + v2 is the square of the speed. For the 3-D case the final result is exactly 
the same as equation (6), but now the w velocity component is nonzero, and hence V 2 = 

2 2u + v2 + w . 

Irrotational Flow 

Because of the assumptions used in the derivations above, in particular the streamline rela
tion (3), the Bernoulli Equation (6) relates p and V only along any given streamline. Different 
streamlines will in general have different po constants, so p and V cannot be directly related 
between streamlines. For example, the simple shear flow on the left of the figure has parallel 
flow with a linear u(y), and a uniform pressure p. Its po distribution is therefore parabolic 
as shown. Hence, there is no unique correspondence between velocity and pressure in such 
a flow. 

y y 

po 

V V 

po 

Rotational flow Irrotational flow 

However, if the flow is irrotational, i.e. if �V = ∇φ and V 2 = |∇φ|2, then po takes on the same 
value for all streamlines, and the Bernoulli Equation (6) becomes usable to relate p and V in 
the entire irrotational flowfield. Fortunately, a flowfield is irrotational if the upstream flow 
is irrotational (e.g. uniform), which is a very common occurance in aerodynamics. From the 
uniform far upstream flow we can evaluate 

1 
ρV 2 po = p

∞ 
+

2 ∞ 
≡ po∞ 

and the Bernoulli equation (6) then takes the more general form. 

1 
ρ V 2 + p = p (everywhere in an irrotational flow) (7) 

2 
o∞ 

Uses of Bernoulli Equation 

Solving potential flows 

Having the Bernoulli Equantion (7) in hand allows us to devise a relatively simple two-step 
solution strategy for potential flows. 

1. Determine the potential field φ(x, y, z) and resulting velocity field �V = ∇φ using the 
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governing equations. 

2. Once the velocity field is known, insert it into the Bernoulli Equation to compute the 
pressure field p(x, y, z). 

This two-step process is simple enough to permit very economical aerodynamic solution 
methods which give a great deal of physical insight into aerodynamic behavior. The alter
native approaches which do not rely on Bernoulli Equation must solve for �V (x, y, z) and 
p(x, y, z) simultaneously, which is a tremendously more difficult problem which can be ap
proached only through brute force numerical computation. 

Venturi flow 

Another common application of the Bernoulli Equation is in a venturi , which is a flow tube 
with a minimum cross-sectional area somewhere in the middle. 

A1 A2 

V1V 2 

x 

p 

2
p 
p

1 

p
o 

A

Assuming incompressible flow, with ρ constant, the mass conservation equation gives 

A1V1 = A2V2 (8) 

This relates V1 and V2 in terms of the geometric cross-sectional areas. 

1
V2 = V1 

A2 

Knowing the velocity relationship, the Bernoulli Equation then gives the pressure relation
ship. 

1 1 
p1 + ρV

1

2 = po = p2 + ρV
2

2 (9) 
2 2 

Equations (8) and (9) together can be used to determine the inlet velocity V1, knowing only 
the pressure difference p1 − p2 and the geometric areas. By direct substution we have 

� 2(p1 − p2)
V1 = 

ρ [(A1/A2)2 − 1] 

A venturi can therefore by used as an airspeed indicator, if some means of measuring the 
pressure difference p1 − p2 is provided. 
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