
F3 – Lecture Notes

1. Thin-Airfoil Analysis Problem (continued)

Reading: Anderson 4.8

Cambered airfoil case

We now consider the case where the camberline Z(x) is nonzero. The general thin airfoil
equation, which is a statement of flow tangency on the camberline, was derived previously.

1

2π

∫ π

0

γ(θ) sin θ dθ

cos θ − cos θo

= V
∞

(

α −
dZ

dx

)

(1)

For an arbitrary camberline shape Z(x), the slope dZ/dx varies along the chord, and in the
equation it is negated and shifted by the constant α. Let us consider this combination to be
some general function of θo.

α −
dZ

dx
≡ f(θo)

For the purpose of computation, any such function can be conveniently represented or ap-
proximated by a Fourier cosine series ,

f(θo) = A0 −
N
∑

n=1

An cos nθo

which is illustrated in the figure. The negative sign in front of the sum could be absorbed
into all the coefficients, but is left outside for later algebraic simplicity.
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The overall summation can be made arbitrarily close to a known f(θo) by making N suffi-
ciently large (i.e. using sufficiently many terms). The required coefficients A0, A1, . . .AN

are computed one by one using Fourier analysis , which is the evaluation of the following
integrals.

A0 =
1

π

∫ π

0

f(θ) dθ

A1 =
2

π

∫ π

0

f(θ) cos θ dθ

A2 =
2

π

∫ π

0

f(θ) cos 2θ dθ

...

AN =
2

π

∫ π

0

f(θ) cos Nθ dθ
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For the particular f(θo) used here, these integrals become

A0 = α −
1

π

∫ π

0

dZ

dx
dθ

An =
2

π

∫ π

0

dZ

dx
cos nθ dθ (n = 1, 2, . . .)

In practice, the integrals can be evaluated either analytically or numerically. If dZ/dx is
smooth, then the higher An coefficients will rapidly decrease, and at some point the remainder
can be discarded (the series truncated) with little loss of accuracy.

Replacing α − dZ/dx in equation (1) with its Fourier series gives the integral equation
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2π

∫ π

0

γ(θ) sin θ dθ

cos θ − cos θo
= V

∞

(

A0 −
N
∑

n=1

An cos nθo

)

(2)

which is to be solved for the unknown γ(θ) distribution. As before, the solution of this
integral equation is beyond scope here. Again, let us simply state the solution.

γ(θ) = 2V
∞

(

A0

1 + cos θ

sin θ
+

N
∑

n=1

An sin nθ

)

The leading term is the same as for the zero-camber case, but with A0 replacing α. The re-
maining coefficients A1, A2, . . . in the summation depend only on the shape of the camberline,
and in particular are independent of α.

The figure shows the contributions of the various terms towards γ, all plotted versus the
physical x coordinate rather than versus θ. Note that here the coefficients A0, A1 . . .AN have

γ
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already been determined, and are now merely used to construct γ(θ) by simple summation
of the series. This γ(θ) will now be integrated to obtain the lift force and moment.

Force calculation

The circulation and lift/span are computed in the same manner as with the symmetric airfoil
case.

Γ =
∫ c

0

γ(ξ) dξ , L′ = ρV
∞

Γ

The integral is again most easily performed in the trigonometric coordinate θ.

Γ =
c

2

∫ π

0

γ(θ) sin θ dθ = cV
∞

[

A0

∫ π

0

(1 + cos θ) dθ +
N
∑

n=1

An

∫ π

0

sin nθ sin θ dθ

]

The first integral in the brackets is easily evaluated.
∫ π

0

(1 + cos θ) dθ = π
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The integrals inside the summation can be evaluated by using the orthogonality property of
the sine functions.

∫ π

0

sin nθ sin mθ dθ =

{

π/2 (if n = m)
0 (if n 6= m)

We see that only the n = 1 integral inside the summation evaluates to π/2, and all the others
are zero. The final result is

Γ = c V
∞

(

πA0 +
π

2
A1

)

L′ = ρV
∞

Γ = ρV 2

∞
c π

(

A0 +
1

2
A1

)

c` =
L′

1

2
ρV 2
∞
c

= π (2A0 + A1)

It’s informative to substitute the previously-obtained expressions for A0 and A1, giving

c` = 2π

[

α −
1

π

∫ c

0

dZ

dx
(1 − cos θo) dθo

]

The integral term inside the brackets depends only on the camberline shape, and is indepen-
dent of the angle of attack. Hence the lift slope is

dc`

dα
= 2π

which is the same as for the symmetrical airfoil case. We therefore reach the important
conlcusion that camber has no influence on the lift slope. A terse and convenient way to
represent the cl(α) function is therefore

c` =
dc`

dα
(α − αL=0)

where αL=0 is called the zero-lift angle , which depends only on the camberline shape.

αL=0 =
1

π

∫ c

0

dZ

dx
(1 − cos θo) dθo

The moment/span about the leading edge is again computed using the trigonometric coor-
dinate.

M ′

LE
= −ρV

∞

∫ c

0

γ ξdξ = −ρV
∞

c2

4

∫ c

0

γ(θ) (1−cos θ) sin θdθ = −ρV 2

∞

c2

4
π
(

A0 + A1 −
1

2
A2

)

The moment/span and corresponding moment coefficient about the x = c/4 quarter-chord
point are

M ′

c/4
= M ′

LE
+

c

4
L′ = ρV 2

∞

c2

4

π

2
(A2 − A1)

cm,c/4 =
M ′

c/4

1

2
ρV 2
∞
c2

=
π

4
(A2 − A1)
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An important result is that this cm,c/4 depends only on the camberline shape, but not on
the angle of attack. Therefore, the quarter-chord location is the aerodynamic center for any
airfoil, defined as the location about which the moment is independent of α, or

dcm,c/4

dα
= 0

Summary

For airfoil analysis, Thin Airfoil Theory takes in the following inputs:

α angle of attack
dZ/dx camberline slope distribution along chord

The outputs are:

c` lift coefficient
cm moment coefficient, about c/4 or any other location

The information propagates as follows.

α ,
dZ

dx
(θo)

Fourier
analysis

−→ A0 , A1 . . . AN

series
summing

−→ γ(θ)

chordwise
integration

−→ c` , cm

The Fourier coefficients An and the vortex sheet strength distribution γ(θ) are intermediate
results.

The influence of camber on the airfoil c`(α) and cm,c/4(α) curves is illustrated in the figure.

α α

cl cm,c/4cl

cm,c/4
αL=0

These results are subject to the assumptions inherent in thin airfoil theory. In practice, they
are surprisingly accurate even for relatively thick or highly-cambered airfoils. It appears to be
better at predicting trends (with camber, α, etc) than absolute numbers. When used merely
as a conceptual framework for understanding airfoil behavior rather than for quantitative
predictions, thin airfoil theory is highly applicable to almost any airfoil.
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