
Fluids – Lecture 12 Notes 

1. Stream Function 

2. Velocity Potential 

Reading: Anderson 2.14, 2.15 

Stream Function 

Definition 

Consider defining the components of the 2-D mass flux vector ρ~V as the partial derivatives 
¯of a scalar stream function, denoted by ψ(x, y): 

¯ ¯∂ψ ∂ψ 
ρu = , ρv = − 

∂y ∂x 

For low speed flows, ρ is just a known constant, and it is more convenient to work with a 
scaled stream function 

ψ̄ 
ψ(x, y) = 

ρ 

which then gives the components of the velocity vector ~V . 

∂ψ ∂ψ 
u = , v = − 

∂y ∂x 

Example 

Suppose we specify the constant-density streamfunction to be 

� 1 
2ψ(x, y) = ln x2 + y2 = ln(x 2 + y )

2 

which has a circular “funnel” shape as shown in the figure. The implied velocity components 
are then 

∂ψ y ∂ψ −x 
u = 

∂y 
= 

x2 + y2 
, v = − = 

∂x x2 + y2 

which corresponds to a vortex flow around the origin. 
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y 

vortex flow example 

1 



� 

Streamline interpretation 

The stream function can be interpreted in a number of ways. First we determine the differ
¯ential of ψ as follows. 

¯ ¯∂ψ ∂ψ¯dψ = dx + dy 
∂x ∂y 

¯dψ = ρu dy − ρv dx 

¯ ¯Now consider a line along which ψ is some constant ψ1. 

¯ ¯ψ(x, y) = ψ1 

¯ ¯Along this line, we can state that dψ = dψ1 = d(constant) = 0, or 

dy v 
ρu dy − ρv dx = 0 → = 

dx u 

¯which is recognized as the equation for a streamline. Hence, lines of constant ψ(x, y) are 
streamlines of the flow. Similarly, for the constant-density case, lines of constant ψ(x, y) are 
streamlines of the flow. In the example above, the streamline defined by 

ln x2 + y2 = ψ1 

can be seen to be a circle of radius exp(ψ1). 

V 
d 

dx 

dy 

− 

u 

vψ = 0 

− −ψ = ψ1y 

x 

Mass flow interpretation 
¯ ¯ ¯Consider two streamlines along which ψ has constant values of ψ1 and ψ2. The constant 

mass flow between these streamlines can be computed by integrating the mass flux along 
any curve AB spanning them. First we note the geometric relation along the curve, 

n dA = ı̂ dy − ˆˆ  dx 

and the mass flow integration then proceeds as follows. 

� B � B� B 
¯ ¯ ¯m = ρ~ ˆ˙ V · n dA = (ρu dy − ρv dx) = dψ = ψ2 − ψ1 

A A A 

Hence, the mass flow between any two streamlines is given simply by the difference of their 
stream function values. 
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Continuity identity 
¯Consider the mass flux field ρ~V (x, y) specified by some ψ(x, y). Computing the divergence 

of this field we have 

∇ · 

� 
ρ~
� ∂(ρu) ∂(ρv) ∂ ∂ψ ∂ ∂ψ ∂2ψ̄ ∂2ψ̄

V = + = − = − = 0 
∂x ∂y ∂x ∂y ∂y ∂x ∂y ∂x ∂x ∂y 

¯so that any mass flux field specified via ψ(x, y) will automatically satisfy the steady mass 
continuity equation. In low speed flow, a similar computation shows that any velocity field 
specified via ψ(x, y) will automatically satisfy 

∇ · V = 0 

which is the constant-density mass continuity equation. Because of these properties, using 
the stream function to define the velocity field can give mathematical simplification in many 
fluid flow problems, since the continuity equation then no longer needs to be addressed. 

Velocity Potential 

Definition 

Consider defining the components of the velocity vector ~V as the gradient of a scalar velocity 
potential function, denoted by φ(x, y, z). 

~ ∂φ ∂φ 
+ ˆ ∂φ 

V = ∇φ = ı̂ + ˆ k 
∂x ∂y ∂z 

If we set the corresponding x, y, z components equal, we have the equivalent definitions 

∂φ ∂φ ∂φ 
u = , v = , w = 

∂x ∂y ∂z 

Example 

For example, suppose we specify the potential function to be 

x 
φ(x, y) = arctan 

y 

which has a corkscrew shape as shown in the figure. The implied velocity components are 
then 

∂φ y ∂φ −x 
u = 

∂x 
= 

x2 + y2 
, v = = 

∂y x2 + y2 
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vortex flow example 

which corresponds to a vortex flow around the origin. Note that this is exactly the same 
velocity field as in the previous example using the stream function. 

Irrotationality 

If we attempt to compute the vorticity of the potential-derived velocity field by taking its 
curl, we find that the vorticity vector is identically zero. For example, for the vorticity 
x-component we find 

∂w ∂v ∂ ∂φ ∂ ∂φ ∂2φ ∂2φ 
ξx ≡ − = − = − = 0 

∂y ∂z ∂y ∂z ∂z ∂y ∂y∂z ∂z∂y 

and similarly we can also show that ξy = 0 and ξz = 0. This is of course just a manifestation 
of the general vector identity curl(grad) = 0 . Hence, any velocity field defined in terms 
of a velocity potential is automatically an irrotational flow . Often the synonymous term 
potential flow is also used. 

Directional Derivative 

In many situations, only one particular component of the velocity is required. For example, 
for computing the mass flow across a surface, we only require the normal velocity component. 
This is typically computed via the dot product ~ ˆV · n. In terms of the velocity potential, we 
have 

∂φ ~ ˆ ˆV · n = ∇φ · n = 
∂n 

where the final partial derivative ∂φ/∂n is called the directional derivative of the potential 
along the normal coordinate n. The figure illustrates the relations. 

Δφ 

n φ = φ 
φ = φ 

φ = φ 

1φ = φ 
2 

3 

4 

V n =. ̂  6 φ 
6n 

V = 

In general, the component of the velocity along any direction can be obtained simply by 
taking the directional derivative of the potential along that same direction. 
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