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F4 – Lecture Notes 
1. Dimensional Analysis – Buckingham Pi Theorem 

2. Dynamic Similarity – Mach and Reynolds Numbers 

Reading: Anderson 1.7 

Dimensional Analysis 
Physical parameters 
A large number of physical parameters determine aerodynamic forces and moments. The 
following parameters are involved in the production of lift. 

Parameter Symbol Units 
L� mt−2Lift per span 

lt
Angle of attack � —


−1
Freestream velocity V
ml−3Freestream density �

−1t−1 

lt
Freestream viscosity µ

� ml

−1
Freestream speed of sound a

Size of body (e.g. chord) c l 

For an airfoil of a given shape, the lift per span in general will be a function of the remaining 
parameters in the above list. 

L� = f(�, � , V
�
, c, µ

�
, a

�
) 

or f − L� = g(L�, �, � , V
�
, c, µ

�
, a

�
) = 0 

In this particular example, the g function has N = 7 parameters, expressed in a total of 
K = 3 units (mass m, length l, and time t). 

Dimensionless Forms 
The Buckingham Pi Theorem states that this function can be rescaled into an equivalent 
dimensionless function 

ḡ( �1, �2 . . .�N −K ) = 0 

with unly N−K = 4 dimensionless parameters, or Pi products. These are products of the 
parameters of the dimensional function g. In this particular case, the Pi products are: 

�
L

1 = 
1 = c� lift coefficient 
� V 2 c

2 
�2 = � = � angle of attack 

� V c 
�3 = � � 

µ
= Re Reynolds number 

V
�4 = � 

= M Mach number 
a

The ḡ function is therefore 
ḡ(c�, �, Re, M

�
) = 0 
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which can be considered to give c� in terms of the remaining three parameters. 

¯c� = f (�, Re, M�) 

Derivation of dimensionless forms 
Anderson 1.7 has details on how the Pi product combinations can be derived for any complex 
situation using linear algebra. In many cases, however, the products can be obtained by 
physical insight, or perhaps by inspection. Several rules can be applied here: 

•	 Any parameter which is already dimensionless, such as �, is automatically one of the 
Pi products. 

•	 If two parameters have the same units, such as V and a
� , then their ratio (M in 

this case) will be one of the Pi products. 

•	 A power or simple multiple of a Pi product is an acceptable alternative Pi product. For 
example, (V

�
/a

�
)2 is an acceptable alternative to V

�
/a

�
, and � V 2 is an acceptable 

alternative to 1 � V 2 . Which particular forms are used is a matter of convention. 
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•	 Combinations of Pi products can replace the originals. For example, the 3rd and 4th 
products in the example could have been defined as 

� a c 
�3 = � � 

= Re/M
� 

µ
V

�4 = � 
= M

a

which is workable alternative, but perhaps less practical, and certainly less traditional. 

Dynamic Similarity 
It is quite possible for two differently-sized physical situations, with different dimensional 
parameters, to nevertheless reduce to the same dimensionless description. The only require
ment is that the corresponding Pi products have the same numerical values. 

Airfoil flow example 
Consider two airfoils which have the same shape and angle of attack, but have different sizes 
and are operating in two different fluids. Let’s omit the ()

� subscript for clarity. 

Airfoil 1 (sea level)	 Airfoil 2 (cryogenic tunnel) 

c
a
µ
�
V
�1 = 5� 

1 = 210m/s 
1 = 1.2kg/m3 

1 = 1.8 × 10−5kg/m-s 
1 = 300m/s 
1 = 1.0m c

a
µ
�
V
�2 = 5� 

2 = 140m/s 
2 = 3.0kg/m3 

2 = 1.5 × 10−5kg/m-s 
2 = 200m/s 
2 = 0.5m 

Airfoil 1 − Sea level air	 Airfoil 2 − Cryogenic tunnel 
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The Pi products evaluate to the following values. 

Airfoil 1 Airfoil 2 

M

�1 = 5�


Re1 = 1.4 × 107


1 = 0.7
 M

�2 = 5� 

Re2 = 1.4 × 107 

2 = 0.7 

¯Since these are also the arguments to the f function, we conclude that the c� values will be 
the same as well. 

¯ ¯f (�1, Re1, M1) = f (�2, Re2, M2) 

c�1 = c�2 

When the nondimensionalized parameters are equal like this, the two situations are said to 
have dynamic similarity . One can then conclude that any other dimensionless quantity must 
also match between the two situations. This is the basis of wind tunnel testing, where the 
flow about a model object duplicates and can be used to predict the flow about the full-
size object. The prediction is correct only if the model and full-size objects have dynamic 
similarity. 

Approximate dynamic similarity 
Frequently it is not essential to exactly match all the dimensionless parameters to obtain a 
good correspondence between two flows. For example, for low speed flows where M� < 0.3, 
the precise value of this Mach number has little effect on the flow. Likewise, the Reynolds 
number has little effect on the lift provided Re > 106 or so. If these conditions are met, then 
we can assume that 

¯c� = f (�) 

and using wind tunnel data to predict lift simply requires that the angle of attack be matched. 
This may not be true of the other aerodynamic force coefficients. The cd of an airfoil, for 
example, is likely to always have a significant dependence on the Reynolds number which 
cannot be neglected. 

¯cd = f (�, Re) 
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