
Stacks

Stacks are a subclass of Linear Lists; all access to a stack is restricted to one end of the
list, called the top of stack. Visually, picture a stack of books, coins, plates, etc. Addition
of books, plates, etc. occurs at the top of the stack; removal also occurs at the top of the
stack.

A Stack is an ordered (by position, not by value) collection of data (usually
homogeneous), with the following operations defined on it:

Operation Description
Initialize Initialize internal structure; create empty stack
Push Add new element to top of stack
Pop Remove top element from stack
Empty True iff stack has no elements
StackTop Returns copy of top element of stack (without popping it)
Size Returns number of elements in the stack

An array-based stack requires we know two values a priori: the type of data contained in
the stack, and the size of the array. For our implementation, we will assume that the stack
stores integer numbers and can store 10 numbers.

The stack itself is a structure containing two elements: Data, the array of data, and Top,
an index that keeps track of the current top of stack; that is, it tells us where data is added
for a Push and removed for a Pop.

Initialize

Preconditions : none
Post-Conditions: Stack, Top set to 1

Pseudo-Code :
Set Top to 1
Return Stack_Array and Top to the user.

Push

Preconditions : Non-Full Stack, Element to Push
Post-Conditions: Stack with element pushed onto it

Pseudo-Code :
If Stack is Full Then

Output “Overflow, Stack is full, cannot push.”
Else

Place Element in Stack(Top)

Increment Top

Return Stack and Top to the user.

Pop

Preconditions : Non-Empty Stack
Post-Conditions: Stack with top element popped off, element popped off

Pseudo-Code :
If Stack is Empty Then

Output “Underflow, Stack is empty, cannot pop.”
Else

Top:= Top-1;
Return element in Stack(Top)

Empty

Preconditions : Stack
Post-Conditions: Determines if the stack is empty

Pseudo-Code :
If Top = 1 Then

Return Empty_Stack := True
Else

Return Empty_Stack := False

StackTop

Preconditions : Stack
Post-Conditions: Return the top element in a non-empty stack

Pseudo-Code :
If Top = 1 Then

Output “Stack is Empty – Cannot get Top”
Else

Return Stack(Top-1)

Size

Preconditions : Stack
Post-Conditions: Return the size of the stack

Pseudo-Code :

Return (Top-1)

Infix to Postfix Conversion

Preconditions: A non-empty input string containing the expression in infix form
Postconditions: A string in postfix form that is equivalent to the infix expression

Pseudocode:
1. Create a user Stack
2. Get the infix expression from the user as a string, say Infix
3. Check if the paranthesis are balanced as follows:

For I in 1.. length(Infix) do
i. If Infix(I) = ‘(’ then Push onto the Stack
ii. If Infix(I) = ‘)’ then Pop one element form the Stack

4. If Stack is non-empty
a. Display “non-balanced expression”
b. Goto 2

5. Create a new string Postfix
6. Set Postfix_Index to 1
7. For I in 1 .. Length(Infix)

a. If Infix(I) is an operand, append it to postfix string as follows:
i. Postfix(Postfix_Index) := Infix(I);
ii. Postfix_Index:=Postfix_Index + 1;

b. If the Infix(I) is an operator, process operator as follows
1. Set done to false_

2. Repeat
a. If Stack is empty or Infix(I) is ‘(‘ then

i. push Infix(I) onto stack
ii. set done to true

b. Else if precedence(Infix(I)) > precedence(top operator)
i. Push Infix(I) onto the stack (ensures higher precedence

operators evaluated first)
ii. set done to true

c. Else
i. Pop the operator stack
ii. If operator popped is ‘(‘, set done to true
iii. Else append operator popped to postfix string

3. Until done
8. While Stack is not empty

a. Pop operator
b. Append it to the postfix string

9. Return Postfix

Queues

Queues are a subclass of Linear Lists, which maintain the First-In-First-Out order of
elements. Insertion of elements is carried out at the ‘Tail’ of the queue and deletion is
carried out at the ‘Head’ of the queue.

A queue is an ordered (by position, not by value) collection of data (usually
homogeneous), with the following operations defined on it:

Operation Description

Initialize Initialize internal structure; create an empty queue
Enqueue Add new element to the tail of the queue
Dequeue Remove an element from the head of the queue
Empty True iff the queue has no elements
Full True iff no elements can be inserted into the queue
Size Returns number of elements in the queue
Display Display the contents of the Queue

An array-based queue requires us to know two values a priori: the type of data contained
in the queue, and the size of the array. For our implementation, we will assume that the
queue stores integer numbers and can store 10 numbers.

The queue itself is a structure containing three elements: Data, the array of data, Head,
an index that keeps track of the first element in the queue (location where data is removed
from the queue), and Tail, an index that keeps track of the last element in the queue
(location where elements are inserted into the queue).

Initialize

Preconditions : none
Post-Conditions: Queue, Head, Tail set to 1

Pseudo-Code :
Set Head to 1
Set Tail to 1
Return the Queue to the user.

Enqueue

Preconditions : Non-Full Queue, Element to insert
Post-Conditions: Queue with the element appended to it

Pseudo-Code :
If Queue is Full (Tail = Size of Queue + 1) Then

Output “Overflow, Queue is full, cannot Enqueue.”
Else

Place Element in Queue(Tail)

Increment Tail (Tail = Tail + 1)

Return the queue to the user.

Dequeue

Preconditions : Non-Empty Queue
Post-Conditions: Queue with element at Head removed, element that is dequeued

Pseudo-Code :
If Queue is Empty (Head = Tail) Then

Output “Underflow, Queue is empty, cannot dequeue.”
Else

Element := Queue(Head);
Move all the elements from head+1 to Size of Queue one step to
the left
Return Element

Empty

Preconditions : Queue
Post-Conditions: Determines if the queue is empty

Pseudo-Code :
If Head = Tail Then

Return Empty_Queue := True
Else

Return Empty_Queue:= False

Full

Preconditions : Queue
Post-Conditions: Return True if the Queue is full

Pseudo-Code :
If Tail = Queue_Size+1 Then

Return True
Else

Return False

Size

Preconditions : Queue
Post-Conditions: Return the number of elements in the queue

Pseudo-Code :
Return (Tail - Head)

Display

Preconditions : Queue
Post-Conditions: Display the contents of the queue

Pseudo-Code :
If head < 1 then

Lb :=1;
Else

Lb := Head;
If tail > max_queue_ size + 1 then

Ub := max_queue_size;
Else

Ub := Tail;
For I:= Lb to Ub

Display Queue(I)

Jayakanth Srinivasan
I. Kristina Lundqvist

