
1.B: The Second Law of Thermodynamics 
[IAW 42-50; VN Chapter 5; VWB&S-6.3, 6.4, Chapter 7] 

1.B.1 Concept and Statements of the Second Law (Why do we need a second law?) 
The unrestrained expansion, or the temperature equilibration of the two bricks, are familiar 

processes. Suppose you are asked whether you have ever seen the reverse of these processes take 
place? Do two bricks at a medium temperature ever go to a state where one is hot and one is cold? 
Will the gas in the unrestrained expansion ever spontaneously return to occupying only the left side 
of the volume? Experience hints that the answer is no. However, both these processes, unfamiliar 
though they may be, are compatible with the first law. In other words the first law does not prohibit 
their occurrence. There thus must be some other “great principle” that describes the direction of 
natural processes, that tells us which first law compatible processes will not be observed. This is 
contained in the second law. Like the first law, it is a generalization from an enormous amount of 
observation. 

There are several ways in which the second law of thermodynamics can be stated. Listed 
below are three that are often encountered. As described in class (and as derived in almost every 
thermodynamics textbook), although the three may not appear to have much connection with each 
other, they are equivalent. 

1) No process is possible whose sole result is the absorption of heat from a reservoir and the 
conversion of this heat into work. [Kelvin-Planck statement of the second law] 

Q 

System 

T2 

W This is not possible 

T1 

2) No process is possible whose sole result is the transfer of heat from a cooler to a hotter body. 
[Clausius statement of the second law] 

Q 

T2 

T1 

For T1 < T2 , this is not possible 

Q 
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3) There exists a property called entropy, S, which is a thermodynamic property of a system. For a 
reversible process, changes in this property are given by 

dS = (dQreversible)/T 

The entropy change of any system and its surroundings, considered together, is positive and 
approaches zero for any process which approaches reversibility. 

∆ Stotal > 0 

For an isolated system, i.e., a system that has no interaction with the surroundings, changes in the 
system have no effect on the surroundings. In this case, we need to consider the system only, and 
the first and second laws become: 

∆ E system = 0 
∆ S system > 0 

For an isolated system the total energy (E = U + Kinetic Energy + Potential Energy + ....) is constant. 
The entropy can only increase or, in the limit of a reversible process, remain constant. 

All of these statements are equivalent, but (3) gives a direct, quantitative measure of the departure 
from reversibility. 

Entropy is not a familiar concept and it may be helpful to provide some additional rationale for its 
appearance. If we look at the first law, 

dU = dQ − dW 

the term on the left is a function of state, while the two terms on the right are not. For a simple 
compressible substance, however, we can write the work done in a reversible process as dW = PdV , 
so that 

dU = dQ − PdV ; First law for a simple compressible substance, reversible process. 

Two out of the three terms in this equation are expressed in terms of state variables. It seems 
plausible that we ought to be able to express the third term using state variables as well, but what are 
the appropriate variables? If so, the term dQ = ( ) [ ] should perhaps be viewed as analogous to dW = 
PdV where the parenthesis denotes an intensive state variable and the square bracket denotes an 
extensive state variable. The second law tells us that the intensive variable is the temperature, T, and 
the extensive state variable is the entropy, S. 

The first law for a simple compressible substance in terms of state variables is thus 

dU = TdS − PdV . (B.1.1) 

Because Eq. (B.1.1) includes the second law, it is referred to as the combined first and second law. 
Because it is written in terms of state variables, it is true for all processes, not just reversible ones. 

We list below some attributes of entropy: 
a) S  is an extensive variable. The entropy per unit mass, or specific entropy, is s. 
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b)	 The units of entropy are Joules per degree Kelvin (J/K). The units for specific entropy are 
J/K-kg. 

dQ
c)	 For a system, dS = rev , where the numerator is the heat given to the system and the

T 
denominator is the temperature of the system at the location where the heat is received. 

d) dS = 0 for pure work transfer. 

Muddy points
Why is dU = TdS − PdV always true? (MP 1B.1) 
What makes dQrev different than dQ? (MP 1B.2) 

1.B.2 Axiomatic Statements of the Laws of Thermodynamics1 

(i.) Introduction 
As a further aid in familiarization with the second law of thermodynamics and the idea of 

entropy, we draw an analogy with statements made previously concerning quantities that are closer 
to experience. In particular, we wish to (re-) present the Zeroth and First Laws of thermodynamics 
in the same framework as we have used for the Second Law. In this so-called "axiomatic 
formulation", the Zeroth, First and Second Laws are all introduced in a similar fashion. 

(ii.) Zeroth Law 

We start with a statement which is based on two observations: 
a)	 If two bodies are in contact through a thermally-conducting boundary for a sufficiently long 

time, no further observable changes take place; thermal equilibrium is said to prevail. 
b)	 Two systems which are individually in thermal equilibrium with a third are in thermal 

equilibrium with each other; all three systems have the same value of the property called 
temperature. 

The closely connected ideas of temperature and thermal equilibrium are formally expressed in the 
“Zeroth Law of Thermodynamics”: 

Zeroth Law 
There exists for every thermodynamic system in equilibrium a property 
called temperature. Equality of temperature is a necessary and 
sufficient condition for thermal equilibrium. 

The Zeroth law thus defines a property (temperature) and describes its behavior. 

(iii.) First Law 
Observations also show that for any system there is a property called the energy. The First 

Law asserts that one must associate such a property with every system. 

First Law 
There exists for every thermodynamic system a property called the 
energy. The change of energy of a system is equal to the mechanical 
work done on the system in an adiabatic process. In a non-adiabatic 
process, the change in energy is equal to the heat added to the system 
minus the mechanical work done by the system. 

1 From notes of Professor F. E. C. Culick, California Institute of Technology (with minor changes) 
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On the basis of experimental results, therefore, one is led to assert the existence of two new 
properties, the temperature and internal energy, which do not arise in ordinary mechanics. In a 
similar way, a further remarkable relationship between heat and temperature will be established, and 
a new property, the entropy, defined. Although this is a much less familiar property, it is to be 
stressed that the general approach is quite like that used to establish the Zeroth and First Laws. A 
general principle and a property associated with any system are extracted from experimental results. 
Viewed in this way, the entropy should appear no more mystical than the internal energy. The 
increase of entropy in a naturally occurring process is no less real than the conservation of energy. 

(iv.) Second Law 
Although all natural processes must take place in accordance with the First Law, the 

principle of conservation of energy is, by itself, inadequate for an unambiguous description of the 
behavior of a system. Specifically, there is no mention of the familiar observation that every natural 
process has in some sense a preferred direction of action. For example, the flow of heat occurs 
naturally from hotter to colder bodies, in the absence of other influences, but the reverse flow 
certainly is not in violation of the First Law. So far as that law is concerned, the initial and final 
states are symmetrical in a very important respect. 

The Second Law is essentially different from the First Law; the two principles are 
independent and cannot in any sense be deduced from one another. Thus, the concept of energy is 
not sufficient, and a new property must appear. This property can be developed, and the Second 
Law introduced, in much the same way as the Zeroth and First Laws were presented. By 
examination of certain observational results, one attempts to extract from experience a law which is 
supposed to be general; it is elevated to the position of a fundamental axiom to be proved or 
disproved by subsequent experiments. Within the structure of classical thermodynamics, there is no 
proof more fundamental than observations. A statement which can be adopted as the Second Law of 
thermodynamics is: 

Second Law 
There exists for every thermodynamic system in equilibrium an 
extensive scalar property called the entropy, S, such that in an 
infinitesimal reversible change of state of the system, dS = dQ/T, 
where T is the absolute temperature and dQ is the amount of heat 
received by the system. The entropy of a thermally insulated system 
cannot decrease and is constant if and only if all processes are 
reversible. 

As with the Zeroth and First Laws, the existence of a new property is asserted and its behavior is 
described. 

(v.) Reversible Processes 
In the course of this development, the idea of a completely reversible process is central, and 

we can recall the definition, “a process is called completely reversible if, after the process has 
occurred, both the system and its surroundings can be wholly restored by any means to their 
respective initial states”. Especially, it is to be noted that the definition does not, in this form, 
specify that the reverse path must be identical with the forward path. If the initial states can 
be restored by any means whatever, the process is by definition completely reversible. If the paths 
are identical, then one usually calls the process (of the system) reversible, or one may say that the 
state of the system follows a reversible path. In this path (between two equilibrium states 1 and 2), 
(i) the system passes through the path followed by the equilibrium states only, and (ii) the system 
will take the reversed path 2 to 1 by a simple reversal of the work done and heat added. 

Reversible processes are idealizations not actually encountered. However, they are clearly 
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useful idealizations. For a process to be completely reversible, it is necessary that it be quasi-static 
and that there be no dissipative influences such as friction and diffusion. The precise (necessary and 
sufficient) condition to be satisfied if a process is to be reversible is the second part of the Second 
Law. 

The criterion as to whether a process is completely reversible must be based on the initial and 
final states. In the form presented above, the Second Law furnishes a relation between the properties 
defining the two states, and thereby shows whether a natural process connecting the states is 
possible. 

Muddy points 
What happens when all the energy in the universe is uniformly spread, ie, entropy at a 
maximum? (MP 1B.3) 

1.B.3 Combined First and Second Law Expressions 
First Law: 

dU = dQ − dW  - Always true 

Work and heat exchange in terms of state variables: 

dQ = TdS; dW = PdV  - Only true for reversible processes. 

dU = dQ − PdV  ; Simple compressible substance, reversible process 
dU = dQ − PdV − XdY  ; Substance with other work modes (e.g., stress-strain), X is a 
pressure-like quantity, Y is a volume like quantity 
dU = TdS − dW  ; Only true for a reversible process 

First law in terms of state variables: 

dU = TdS − PdV  ; This is a relation between properties and is always true 

In terms of specific quantities (per unit mass): 

du = Tds − Pdv Combined first and second law (a) or Gibbs equation (a) 

The combined first and second law expressions are often more usefully written in terms of the 
enthalpy, or specific enthalpy, = +  Pv: 

dh = du + Pdv + vdP 
= Tds − Pdv + Pdv + vdP , using the first law. 

dh = Tds + vdP 

Or, since v = 1/ ρ 
dP

dh = Tds + . Combined first and second law (b) or Gibbs equation (b) 

In terms of enthalpy (rather than specific enthalpy) the relation is dH = TdS + VdP .
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1.B.4 Entropy Changes in an Ideal Gas 
Many aerospace applications involve flow of gases (e.g., air) and we thus examine the 

entropy relations for ideal gas behavior. The starting point is form (a) of the combined first and 
second law, 

du = Tds − Pdv . 

For an ideal gas, du = cvdT . Thus 
dT P

Tds = c dT + Pdv or ds = c + dv .v v T T 
Using the equation of state for an ideal gas ( Pv = RT ), we can write the entropy change as an 
expression with only exact differentials: 

ds = cv 

dT 
+ R 

dv 
. (B.4.1)

T v 

Integrating between two states “1” and “2”: 

T2 dT v2 dv
∆s s2 − s1 = ∫T1 

cv + R∫v1 

. 
T v 

For constant specific heat 

∆s s2 − s1 = cvln
 T2 


 

+ Rln
 v2 

. 
 T1   v1  

In non-dimensional form (using 	
R 

= (γ − 1 )  
cv 

∆s 
= ln

 T2 

 

+ (γ − 1)ln
 v2 


 
. Entropy change of an ideal gas (B.4.2) 

cv  T1   v1  

Equation (B.4.2) is in terms of specific quantities. For N moles of gas 

∆S 
= N 

 
ln

 T2 

 

+ (γ − 1)ln
 V2 





 
. 

Cv   T1   V1   

Rather than temperature and volume, we can develop an alternative form of the expression, 
in terms of pressure and volume, for entropy change, which allows us to examine an assumption 
we have used over the past year. The ideal gas equation of state can be written as 

lnP + lnv = lnR + lnT. 

Taking differentials of both sides yields 

dP dv dT 

P v T 

Using the above equation in Eq. (B.4.1), and making use of the relations cp = cv + R; cp / cv = γ , 
we find 

1B-6 



 

  

ds = cv 
 dP 

+ 
dv 
 + R 

dv 
, P v v 

or 
ds dP dv 

= + γ . 
c P vv 

Integrating between two states 1 and 2 

γ 
∆s 

= ln
 P2 


 
+ γln

 v2 
 = ln

 P2 
 
v2 
 

 . (B.4.3) 

cv  P1   v1   P1  v1   

Using both sides of (B.4.3) as exponents we obtain 

P vγ 2 s cv2 2  = [Pvγ ]1 
= e ∆ / . (B.4.4)

Pvγ 1 1  

Equation (B.4.4) describes a general process. For the specific situation in which∆s = 0, i.e., the 
entropy is constant, we recover the expression Pvγ  = constant. It was stated that this expression 
applied to a reversible, adiabatic process. We now see, through use of the second law, a deeper 
meaning to the expression, and to the concept of a reversible adiabatic process, in that both are 
characteristics of a constant entropy, or isentropic, process. 

Muddy points

Why do you rewrite the entropy change in terms of Pvγ? (MP 1B.4) 
What is the difference between isentropic and adiabatic? (MP 1B.5) 

1.B.5 Calculation of Entropy Change in Some Basic Processes 

a) Heat transfer from, or to, a heat reservoir. 
A heat reservoir is a constant temperature heat source 

or sink. Because the temperature is uniform, there is no 
heat transfer across a finite temperature difference and 
the heat exchange is reversible. From the definition of 
entropy (dS = dQrev /T ) , 

∆S = 
Q 

,
T 

where Q is the heat into the reservoir (defined here 
as positive if heat flows into the reservoir) 

b) Heat transfer between two heat reservoirs 

The entropy changes of the two reservoirs are 
the sum of the entropy change of each. If the high 

and the lowtemperature reservoir is at TH
temperature reservoir is at TL , the total entropy 
change is 

TH 

QH QH 

Heat transfer from/to a heat reservoir 

Q 
TH 

TL 

Device (block of copper) 
no work 
no change in state 

Heat transfer between two reservoirs 
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H 

∆S = 

 

−Q
 +


 

Q 
 = 

Q (TH − TL ) TH   TL  T TL 

The second law says that the entropy change must be equal to or greater than zero. This 
corresponds to the statement that heat must flow from the higher temperature source to the lower 
temperature source. This is one of the statements of the second law given in Section 1.B.1. 

Muddy points
In the single reservoir example, why can the entropy decrease? (MP 1B.6)9
Why does the entropy of a heat reservoir change if the temperature stays the same? (MP9
1B.7)9
How can the heat transfer from or to a heat reservoir be reversible? (MP 1B.8)9
How can ∆S be less than zero in any process? Doesn't entropy always increase? (MP 1B.9)9

If 
Q 

= ∆S for a reservoir, could you add Q to any size reservoir and still get the same ∆S? 
T 

(MP 1B.10) 

c) Possibility of obtaining work from a single heat reservoir 
We can regard the proposed process as the 

absorption of heat, Q, by a device or system, 
operating in a cycle, rejecting no heat, and 
producing work. The total entropy change is the 
sum of the change in the reservoir, the system or 
device, and the surroundings. The entropy change 
of the reservoir is ∆S = −Q/TH . The entropy 
change of the device is zero, because we are 
considering a complete cycle (return to initial state) 
and entropy is a function of state. The 
surroundings receive work only so the entropy 
change of the surroundings is zero. 
The total entropy change is 

Work from a single heat reservoir 

∆Stotal = ∆Sreservoir + ∆Sdevice + ∆Ssurroundings 

/ += −Q TH + 0 0  

The total entropy change in the proposed process is thus less than zero, 
∆Stotal  < 0 

which is not possible. The second law thus tells us that we cannot get work from a single reservoir 
only. The “only” is important; it means without any other changes occurring. This is the other 
statement of the second law we saw in Section 1.B.1. 

Muddy points
What is the difference between the isothermal expansion of a piston and the (forbidden) 
production of work using a single reservoir? (MP 1B.11) 
For the "work from a single heat reservoir" example, how do we know there is no ∆Ssurr? 
(MP 1B.12) 
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How does a cycle produce zero ∆S? I thought that the whole thing about cycles was an 
entropy that the designers try to minimize. (MP 1B.13) 

d) Entropy changes in the “hot brick problem” 
We can examine in a more quantitative manner the changes that occurred when we put the two 

bricks together, as depicted on the left-hand side of the figure below. The process by which the 
two bricks come to the same temperature is not a reversible one, so we need to devise a reversible 
path. To do this imagine a large number of heat reservoirs at varying temperatures spanning the 
range TH − dT,............,TL + dT , as in the right hand side of the figures. The bricks are put in 
contact with them sequentially to raise the temperature of one and lower the temperature of the 

TH 

TL 

TM 

TM 

TH ........ 
TL 

TH - dT TL + dT 

Temperature equalization of two bricks  Reservoirs used in reversible state transformation 

other in a reversible manner. The heat exchange at any of these steps is dQ = CdT . For the high 
temperature brick, the entropy change is: 

TM CdT 
= C ln


 

TM 
∆Shot brick = ∫TH T  TH  

where C is the heat capacity of the brick (J/kg). This quantity is less than zero. For the cold brick, 

TM CdT 
= C ln


 

TM 
 .∆Scold brick = ∫TL T  TL  

The entropy change of the two bricks is 

2 

∆Sbricks = C 

ln 


 

TM 

 

+ ln 

 

TM 




 

= C ln 
TM > 0 .  

  TH   TL   T TH L  

The process is not reversible. 

e) Difference between the free expansion and the reversible isothermal expansion of an ideal gas 
The essential difference between the free expansion in an insulated enclosure and the 

reversible isothermal expansion of an ideal gas can also be captured clearly in terms of entropy 
changes. For a state change from initial volume and temperature V T1 to final volume and (the1, 
same) temperature V T1 the entropy change is2 , 

2 2 dU 2 PdV
∆S = ∫1 

dS = ∫1 T 
+ ∫1

,
T 
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T S

T S

 V  

 V  
− 

or, making use of the equation of state and the fact that dU = 0 for an isothermal process, 

∆S = NR ln  
2 
 . 

 V1  
This is the entropy change that occurs for the free expansion as well as for the isothermal 
reversible expansion processes—entropy changes are state changes and the two system final and 
end states are the same for both processes. 

For the free expansion: 

∆Ssystem =  NR ln 

 

V2 

 

; ∆Ssurroundings = 0 
 V1  

There is no change in the entropy of the surroundings because there is no interaction between the 
system and the surroundings. The total entropy change is therefore, 

∆Stotal = ∆Ssystem + ∆Ssurroundings  = NR ln 

 

V2 
  > 0. 

 V1  
There are several points to note from this result. 

i) ∆Stotal > 0 so the process is not reversible 
2 dQ

ii) ∆Ssystem > ∫1 T 
= 0; the equality between ∆S  and dQ is only for a reversibleT 

process 
iii) There is a direct connection between the work needed to restore the system to 
the original state and the entropy change: 

W = NRT ln  
2 
  = ∆ 2 1 V1  

The quantity ∆  has a physical meaning as “lost work” in the sense of work 
which we lost the opportunity to utilize. We will make this connection stronger in 
Section 1.C. 

For the reversible isothermal expansion:

The entropy is a state variable so the entropy change of the system is the same as before. In this

case, however, heat is transferred to the system from the surroundings ( Qsurroundings < 0) so that 

∆Ssurroundings = 
Qsurroundings 

< 0.  
T 

The heat transferred from the surroundings, however, is equal to the heat received by the system: 
Qsurroundings = Qsystem = W . 

∆Ssurroundings = 
Qsurroundings 

=
−W 

= - NR ln 

 

V2 
 . T T  V1  

The total change in entropy (system plus surroundings) is therefore 

∆Stotal = ∆Ssystem + ∆Ssurroundings = 
Q 

− 
Q 

= 0. 
T T 

The reversible process has zero total change in entropy. 
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Muddy points
On the example of free expansion versus isothermal expansion, how do we know that the9
pressure and volume ratios are the same? We know for each that P9
1B.14)9

2>P1 and V2>V1. (MP 

Where did ∆Ssystem = NRln

 

V2 
  come from? (MP 1B.15)

 V1  
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Muddiest Points on Part 1B 

1B.1 Why is dU = TdS − PdV always true? 

This is a relation between state variables. As such it is not path dependent, only depends 
on the initial and final states, and thus must hold no matter how we transition from initial 
state to final state. What is not always true, and what holds only for reversible processes 
are the relations Tds = dq and Pdv = dw. One example of this is the free expansion where 
dq = dw = 0, but where the quantities Tds and Pdv (and the integrals of these quantities) 
are not zero. 

1B.2 What makes dQrev different than dQ? 

The term dQrev denotes the heat exchange during a reversible process. We use the 
notation dQ to denote heat exchange during any process, not necessarily reversible. The 
distinction between the two is important for the reason given above in (3). 

1B.3 What happens when all the energy in the universe is uniformly spread, ie, entropy at 
a maximum? 

I quote from The Refrigerator and the Universe, by Goldstein and Goldstein:

“The entropy of the universe is not yet at its maximum possible value and it seems to be

increasing all the time. Looking forward to the future, Kelvin and Clausius foresaw a

time when the maximum possible entropy would be reached and the universe would be at

equilibrium forever afterward; at this point, a state called the “heat death” of the universe,

nothing would happen forever after”. The book also gives comments on the inevitability

of this fate.


1B.4 Why do you rewrite the entropy change in terms of Pvγ? 

We have discussed the representation of thermodynamic changes in P-v coordinates a 
number of times and it is familiar, as is the idea of the “ Pvγ =  constant ” process. I want 
to relate this to the more general expression involving the entropy change (Equation 
B.4.4) to show (i) when the simple form applied and (ii) how valid an approximation it 
was. Using the entropy change, we now have a quantitative metric for doing just that. 

1B.5 What is the difference between isentropic and adiabatic? 

Isentropic means no change in entropy (dS = 0). An adiabatic process is a process with no 
heat transfer (dQ = 0). We defined for reversible processes TdS = dQ. So generally an 
adiabatic process is not necessarily isentropic – only if the process is reversible and 
adiabatic we can call it isentropic. For example a real compressor can be assumed 
adiabatic but is operating with losses. Due to the losses the compression is irreversible. 
Thus the compression is not isentropic. 



1B.6 In the single reservoir example, why can the entropy decrease? 

When we looked at the single reservoir, our “system” was the reservoir itself. The 
example I did in class had heat leaving the reservoir, so that Q was negative. Thus the 
entropy change of the reservoir is also negative. The second law, however, guarantees 
that there is a positive change in entropy somewhere else in the surroundings that will be 
as large, or larger, than this decrease. 

1B.7 Why does the entropy of a heat reservoir change if the temperature stays the 
same? 

A heat reservoir is an idealization (like an ideal gas, a rigid body, an inviscid fluid, a 
discrete element mass-spring-damper system). The basic idea is that the heat capacity of 
the heat reservoir is large enough so that the transfer of heat in whatever problem we 
address does not apprecibly alter the temperature of the reservoir. In grappling with 
approximations such as this it is useful to think about extreme cases. Therefore, suppose 
the thermal reservoir is the atmosphere. The mass of the atmosphere is roughly 1019 kg 
(give or take an order of magnitude). Let us calculate the temperature rise due to the heat 
dumped into the atmosphere by a jet engine during a transcontinental flight. A large gas 
turbine engine might produce on the order of 100 MW of heat, so that the rise in 
atmospheric temperature, δTatm , for the heat transfer Q associated with a 6 hour flight is 
given by 

M cpδTatm = ×  3600 × 108 J .atm 6 

Substituting for the atmospheric mass and the specific heat gives a value for temperature 
change of roughly 10-10 K. To a very good approximation, we can say that the 
temperature of this heat reservoir is constant and we can evaluate the entropy change of 
the reservoir as Q/T. 

1B.8 How can the heat transfer from or to a heat reservoir be reversible? 

We made the assumption that the heat reservoir is very large, and therefore it is a 
constant temperature heat source or sink. Since the temperature is uniform there is no 
heat transfer across a finite temperature difference and this heat exchange is reversible. 
We discussed this in the second example "Heat transfer between two heat reservoirs". 

1B.9 How can ∆S be less than zero in any process? Doesn't entropy always increase? 

The second law says that the total entropy (system plus surroundings) always increases.

(See Section 1.B.1). This means that either the system or the surroundings can have it

entropy decrease if there is heat transfer between the two, although the sum of all entropy

changes must be positive.

For an isolated system, with no heat transfer to the surroundings, the entropy must always

increase.




1B.10 If 
Q 
T 
= ∆S for a reservoir, could you add Q to any size reservoir and still get the


same ∆S? 

Yes, as long as the system you were adding heat to fulfilled the conditions for being a 
reservoir. 

1B.11 What is the difference between the isothermal expansion of a piston and the 
(forbidden) production of work using a single reservoir? 

The difference is contained in the word sole in the Kelvin-Planck statement of the second 
law given in Section 1.B.1 of the notes. 

For the isothermal expansion the changes are: 
a) The reservoir loses heat Q 
b) The system does work W (equal in magnitude to Q) 
c) The system changes its volume and pressure. 
d) The system changes its entropy (the entropy increases by Q/T). 

For the “forbidden” process, 
a) The reservoir loses heat Q 
b)	 The system does work W (= Q) and that’s all the changes that there are. 

leave it to you to calculate the total entropy changes (system plus 
surroundings) that occur in the two processes. 

1B.12 For the "work from a single heat reservoir" example, how do we know there is 
no ∆Ssurr? 

Our system was the heat reservoir itself. In the example we had heat leaving the 
reservoir, thus Q was negative and the entropy change of the reservoir was also negative. 
Using the second law, it is guaranteed that somewhere else in the surroundings a positive 
entropy change will occur that is as large or larger than the decrease of the entropy of the 
reservoir. 

1B 13 How does a cycle produce zero ∆S? I thought that the whole thing about cycles 
was an entropy that the designers try to minimize. 

The change in entropy during a cycle is zero because we are considering a complete cycle 
(returning to initial state) and entropy is a function of state (holds for ideal and real 
cycles!). 

The entropy you are referring to is entropy that is generated in the components of a non-
ideal cycle. For example in a real jet engine we have a non-ideal compressor, a non-ideal 
combustor and also a non-ideal turbine. All these components operate with some loss and 
generate entropy – this is the entropy that the designers try to minimize. Although the 
change in entropy during a non-ideal cycle is zero, the total entropy change (cycle and 

I 



heat reservoirs!) is ∆Stotal > 0. Basically the entropy generated due to irreversibilities in 
the engine is additional heat rejected to the environment (to the lower heat reservoir). We 
will discuss this in detail in Section 1.C.1. 

1B.14 On the example of free expansion versus isothermal expansion, how do we know 
that the pressure and volume ratios are the same? We know for each that P2>P1 

and V2>V1. 

During the free-expansion no work is done and no heat is transferred (insulated system). 
Thus the internal energy stays constant and so does the temperature. This means that 
P1V1 = P2V2 holds also for the free-expansion and that the pressure and volume ratios are 
the same when comparing free-expansion to reversible isothermal expansion. 

1B.15 Where did ∆Ssystem = NRln

 

V2 
  come from? 

 V1  

We were using the 1st and 2nd law combined (Gibbs) and in the example discussed there 
was no change in internal energy (dU=0). If we then integrate dS = P/TdV using P/T = 
NR/V (with N being the number of moles of gas in volume V and R is the universal gas 
constant) we obtain ∆Ssystem = NR ln(V2/V1). 




