Problem 1:

The Concorde is flying at its cruising altitude of $60,000 \mathrm{ft}$ when suddenly one of the cockpit windows cracks and fails, leaving a hole of 5 cm diameter. How much time do the pilots have to put on their oxygen masks given that they pass out at a pressure of 0.1 bar? The initial pressure and temperature in the cockpit are 1 bar and 290 K , and the cockpit volume is $10 \mathrm{~m}^{3}$. Assume that air is a perfect gas with $\gamma=1.4$, the cockpit is well insulated, and that the flow out of the cockpit is choked.

Problem 2:

One kg of air undergoes a cycle as follows:

- Irreversible adiabatic compression from $P_{1}=1$ bar, $T_{1}=300 \mathrm{~K}$, to $P_{2}=30$ bar where $\mathrm{s}_{2}-\mathrm{s}_{1}=60 \mathrm{~J} / \mathrm{kgK}[1=>2]$
- Constant pressure heat input until $T_{3}=1500 \mathrm{~K}[2=>3]$
- Adiabatic, irreversible expansion until $P_{4}=1$ bar where $\mathrm{s}_{4}-\mathrm{s}_{3}=110 \mathrm{~J} / \mathrm{kgK}[3=>4]$
- Constant pressure heat rejection [$4=>1$]

Assume air behaves as a perfect gas with $\mathrm{cp}=1 \mathrm{~kJ} / \mathrm{kgK}$.
Find:
a) $\oint \frac{d Q}{T}$
b) $\Delta S_{\text {total }}$ assuming that the source and sink temperatures of the universe are each constant and equal to 2000 K and 300 K , respectively.
c) Sketch the process on a T-s diagram

