
16.06 Principles of Automatic Control
 
Lecture 27
 

Nonminimum Phase Systems 

Our design rules so far are based on the bode gain-phase theorem, which applies to stable, 
minimum phase systems. The RHP zeros or time delays of NMP systems place fundamental 
limitations on the achievable performance of any closed-loop systems. 

Example: 

Consider the plant 

1 ´ s{10 
Gpsq “ 

sp1 ` s{1q 

Our goal is to design a closed-loop controller with bandwidth as large as possible. How well
 
can we do?
 
Bode plot:
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The slope at high frequency is ́ 1, so it seems that we should be able to cross-over anywhere. 
However, in this case we need to look at the phase plot, sicne gain-phase theorem does not 
apply: 
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Note that additional phase due to zero at s “ `10 is negative.
 

So if we use pure gain, the crossover frequency must be below about ωc “ 3.
 

Let’s add compensation to make slope ́ 1 everywhere:
 

1 ` s{1 Ð cancels plant pole 
Kpsq “ k 

1 ` s{10 Ð stable pole 

1 1 ´ s{10
ñ KpsqGpsq “ 

s 1 ` s{10 

Bode Plot: 
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should crossover below 

here for good margins
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So NMP zero causes significant phase lag (relative to the phase expected from slope) at
 
frequencies up to one decade below crossover.
 

Suppose we could accept PM as low as PM “ 30˝. What would control system look like?
 

Solve for k:
 

=GK “ ´ 90˝ 
´ 2 tan ´1ω{10 

“ ´ 150˝ 

ñ ωc “5.77 r/s 
|GK| “k{ω 

k “ ωc “5.77 

Therefore, 

1 ` s 
Kpsq “5.77 

1 ` s{10 
KpsqGpsq

T psq “ 
1 ` KpsqGpsq

1 ´ s{10
“ 

2 
` 2p0.278qss ? ` 1

57.7 57.7 
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See step response plotted below:
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Note that Mp « 49%. 

In addition, there is a 20% undershoot (wrong way behavior). 

The bottom line is that a non-minimum phase zero places fundamental limitations on the 
bandwidth of the closed-loop system. As a practical matter, if the NMP zero is at s “ a, we 
must have 

ωc ď a{2 

More realistically, to achieve reasonable phase margins and step response, we need 

ωc ď a{3 

Even at ω “ a{10, the NMP zero adds 12˝ of anomalous phase lag. 
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Time Delay 

The effect of a pure time delay is similar to that of a NMP zero. Indeed, a time delay is 
non-minimum phase. The transfer function os a T-second delay is 

´sT ´j ωT e “ e 

So the additional phase lag is ωT . As a practical matter, must cross over at 

ωc ď 1{T 

but more reasonably should have 

ωc ď 0.6{T 

Unstable systems 

For an unstable system, the Bode gain-phase theorem does not apply either. In this case, 
however, the disagreement between slope and phase occurs at low frequency (when viewed 
properly). 

Example: 
10 

Gpsq “ 
s ´ 1 

Bode: 
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Using arguments similar to those made for NMP zeros, can see that we need to crossover at 
least at 

ωc ě 2p 

where p is the location of the unstable pole. 

Note that this is a fuzzy requirement - inthe example, can stabilize the system wtih any 
ωc ą 0, but margins will be poor unless ωc ě 2 r/s. 
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