16.06 Principles of Automatic Control Lecture 22

Nyquist Plot for $G(s)$ with $j \omega$-axis poles

Consider

$$
G(s)=\frac{1}{s(s+1)^{2}}
$$

Because of pole at $s=0$, must deform "D contour" $\left(C_{1}\right)$.

Bode:

Nyquist:

Note that deformation in contour (small semicircle in C_{1}) maps to large semicircle in $G\left(C_{1}\right)$.
Since there are no open loop poles inside C_{1}, the number of closed loop poles is

$$
\begin{array}{lll}
2, & \text { if } \quad-0.5<-1 / k<0 & (k>2) \\
1, & \text { if } 0<-1 / k<\infty & (k<0)
\end{array}
$$

This result is of course in agreement with Routh, root locus.

A note on drawing the Nyquist diagram:

As $\omega \rightarrow 0^{+}$, note that the Nyquist diagram is asymptotic to the vertical line $\operatorname{Re}(s)=$ -2 . Since the phase at zero frequency goes to -90°, it seems that the diagram should be asymptotic to the imaginary axis. Why isn't it?
Express $G(s)$ as:

$$
G(s)=\frac{1}{s(s+1)^{2}}=\frac{1}{s} \cdot \frac{1}{s^{2}+2 s+1}
$$

For small s, can express as series around $s=0$:

$$
\begin{aligned}
G(s) & \approx \frac{1}{s}\left(1-2 s+O\left(s^{2}\right)\right) \\
& =\frac{1}{j \omega}-2+O(\omega)
\end{aligned}
$$

So the diagram is asymptotic to $\frac{1}{j \omega}-2$.

Nyquist Plot of Open Loop Unstable System

Now consider the proportional control of an unstable system:

The root locus:

Bode:

Nyquist diagram:

Note that arc at ∞ is clockwise, because deformation at $s=0$ around pole is counterclockwise.

Since there is one open loop pole in right hand plane, need one counter-clockwise encirclement for stability.

$$
\begin{aligned}
Z & =N+P \\
0 & =-1+1
\end{aligned}
$$

where 0 means no closed loop poles,

- 1 means counter-clockwise encirclement,
+1 means right-half-plane open-loop or pole.
So system is stable for:

$$
\begin{aligned}
-1 & <-1 / k<0 \\
\Rightarrow k & >1
\end{aligned}
$$

Also, note that for $-1 / k<-1 \quad(0<k<1), \quad N=1$, so the number of unstable closed-loop poles is:

$$
\begin{aligned}
Z & =N+P \\
& =1+1 \\
& =2
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

