
16.06 Principles of Automatic Control
 
Lecture 21
 

The Nyquist Stability Criterion 

Can apply the argument principle to finding the stability of the closed loop system 

-
+ k G(s)

yr

The closed loop transfer function is 

Y psq kGpsq
T psq “ “ 

R 1 ` kGpsq 

The closed loop poles of T psq are the roots of 

0 “ 1 ` kGpsq 

That is, the closed loop poles of T psq are zeros of 0 “ 1 ` kGpsq. Note that the poles of 
1 ̀  kGpsq are just the open loop poles of Gpsq. This suggests the following test for stability 
of the closed loop system: 
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Stability Test, Version1: 

Define the contour C1 as shown below: 

Im(s)

Re(s)

C
1

radius goes to ∞

The contour encloses (in the limit) the entire right half plane. For this contour, plot the 
contour map 

1 ` kGpsq 

The number of CW encirclements of the origin by 1 ̀  kGpC1q is equal to Z ´ P , where Z is 
the number of closed loop poles in the right half plane, and P is the number of open loop 
poles in the right half plane. As an equation 

Z “ N ` P 

where Z - the number of closed loop unstable poles, 
N - the number of CW encirclements of 0, 
P - the number of unstable poles 

Stability Test, Version 2: 

Since the “1” term in 1 ` kGpsq just shifts the contour map of kGpsq by one unit to the 
right, it is often (usually) easier to plot kGpsq alone. This is known as the polar plot or 
Nyquist plot for the system. Note that for each encirclement of 0 by 1 ̀  kGpsq, there is one 
encirclement of ́ 1 by kGpsq. So the Nyquist Criterion, in the usual form, is 

1.	 Plot kGpsq for ́ j8 ď s ď j8. First evaluate kGpjωq for ω P r0, 8s and plot. Then 
reflect the image about the real axis and add to the previous image. Note that there 
no need to calculate kGpsq on the circular part of C1 if kGpsq Ñ 0 as s Ñ 8. 
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2.	 Evaluate the number of CW encirclements about ́ 1, and call that number N (see FPE 
for how to count encirclements). 

3. Determine the number of unstable poles of Gpsq, P . 

4. The number of unstable poles of the closed loop system is 

Z “ N ` P 

Finally, if k is unknown, we can instead plot Gpsq, and count encirclements of the point 
´1{k. This is useful for determining the range of gains for which the closed loop system is 
stable, as in root locus. 

Examples 

G(s)

-
+ k

(s+1)2

1

Root locus:
 

Im(s)

Re(s)-1

k>0 k<0
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Bode plot:
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Nyquist plot:
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Note that the Nyquist plot does not encircle ́ 1, and therefore the number of unstable closed 
loop poles is 
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Z “N ` P 

“0 ` 0 (no unstable open loop poles) 
“0, for k “ 1. 

However, we can conclude more than that. The number of encirclements of ́ 1{k is zero for 

1 1
´ ă 0 or ´ ą 1 
k k 
1 1

ñ ą 0 or ă ´1 
k k 

ñ 0 ă k ă 8 or 0 ą k ą ´1 

Therefore, the system is stable for k ą ´1.
 

For k ă ´1, N “ 1, so there is one unstable pole.
 

Example: 

-
+ k

(s+1)3

1
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The Nyquist plot is:
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For ́ 1{k ă ´1{8 p0 ă k ă 8q, system is stable.
 

For ́ 1{k ą 1 p0 ą k ą ´1q, system is stable.
 

For ́ 1{8 ă ´1{k ă 0, pk ą 8q, system has 2 unstable poles.
 

For 0 ă ´1{k ă 1 pk ă ´1q, system has one unstable pole.
 

Of course, this agrees with our Routh and root locus analysis.
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