16.06 Principles of Automatic Control Lecture 33

Note that

$$
\begin{gathered}
K_{d}(1)=0.0556=1 \\
K_{d}(z)-K_{d}(1)=0.3091 \frac{z-1}{z}
\end{gathered}
$$

The step response is shown below. Note the much improved response. The peak overshoot is

$$
M_{p}=0.042
$$

very close to the ideal $M_{p}=0.043$ for $\zeta=0.7071$.

Discrete Design vs. Emulation

The text argues that discrete design should be used if

$$
\omega_{s}=\frac{2 \pi}{T}<10 \omega_{n}
$$

or

$$
\omega_{n} T>\frac{\pi}{5} \approx 0.63
$$

I disagree. If the effective time delay is taken into account, emulation works well out to

$$
\omega_{c} T \approx 1
$$

and maybe higher. But that is close to the upper limit on how high it is possible to cross over due to $T / 2$ time delay.

$$
\omega_{c} \frac{T}{2} \leqslant\left\{\begin{array}{l}
1, \text { less cons. upper limit } \\
0.6, \text { more cons. upper limit. }
\end{array}\right.
$$

So emulation should work in all but the most severe cases.

The W-Transform

The W - Transform is used to allow the use of classical continuous time design techniques (including Bode plots) on discrete-time systems.
Recall that the Tustin transform is

$$
\begin{aligned}
s & \rightarrow \frac{2}{T} \frac{z-1}{z+1} \\
z & \rightarrow \frac{1+s T / 2}{1-s T / 2}
\end{aligned}
$$

So there is no confusion, we use the variable W instead of s, so the W-transform is

$$
z \rightarrow \frac{1+W T / 2}{1-W T / 2}
$$

Can show that this mapping between z and W :

- Is one to one (unique W for each z, vice-verse).
- Maps the unit disk to the left half plane.

Note that the W-transform "warps" frequencies:

$$
\begin{aligned}
W & =\frac{2}{T} \frac{z-1}{z+1} \\
& =\frac{2}{T} \frac{e^{j \omega T}-1}{e^{j \omega T}+1}(\text { on unit circle) } \\
& \left.=\frac{2}{T} \frac{e^{+j \omega T / 2}-e^{-j \omega T / 2}}{e^{+j \omega T / 2}+e^{-j \omega T / 2}} \text { (multiply top and bottom by } e^{-j \omega T / 2}\right) \\
& =\frac{2 j}{T} \tan \left(\frac{\omega T}{2}\right) \text { (Trig. identities) } \\
& =j \nu(\nu=\text { frequency in W domain) }
\end{aligned}
$$

Therefore,

$$
\nu=\frac{\tan (\omega T / 2)}{T / 2}
$$

where $\omega=$ physical frequency,
$\nu=$ apparent frequency in W.
Example

$$
\begin{aligned}
G_{d}(z) & =0.004934 \frac{z+0.9867}{(z-0.9802)^{2}} \\
T & =0.01
\end{aligned}
$$

Design a controller $K_{d}(z)$ so that

- $P M=50^{\circ}$
- $\omega_{c}=50 \mathrm{r} / \mathrm{s}$
- $K_{p}=5000$

First, find $G(W)$ using MATLAB:
gw $=$ d2c (gd, 'tustin')
Result is

$$
G(W)=25 \frac{\left(1+\frac{W}{30,000}\right)\left(1-\frac{W}{200}\right)}{(1+W / 2)^{2}}
$$

Zero at $W=-30,000$ can be ignored, but note presence of RHP zero at $W=+200$.
Alternatively, map poles and zeros by

$$
W=\frac{2}{T} \frac{z-1}{z+1}
$$

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

