
16.06 Principles of Automatic Control
 
Lecture 23
 

Stability Margins 

Stability margins measure how close a closed-loop system is to instability, that is, how large 
or small a change in the system is required to make it become unstable. The two commonly 
used measures of stability are the gain margin and the phase margin. 

•	 The gain margin (GM) is the factor by which the gain can be increased before the 
system becomes unstable. 

•	 The phase margin (PM) is the amount of additional phase lag that would make the 
phase be ́ 180˝ where |KGpjωq| “ 1. 

The GM and PM are important not only because they measure how close the closed-loop 
system is to instability, but also because they (but especially the PM) can be used to predict 
the transient behavior of the closed-loop system. 

Gain and phase margin on Nyquist diagram: 
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GM and PM on Bode diagram:
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Relationship between PM and damping 

When the phase margin is small, the closed-loop system is close to instability, so that there 
will be closed-loop poles near the jω´axis. That is, low PM ñ low damping ratio. 

This result can be made explicit by considering the closed-loop system 

r a

s(s+b)-

The closed-loop transfer function is 

a 
T psq “ 

s2 ` bs ` a 

So, 

ωn “a 
b 

ζ “ ? 
2 a 

Can show that, for this system, 
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¨ ˛ 

´1 
˝ ‚PM “ tan b

a 
2ζ 

1 ` 4ζ2 ´ 2ζ2 

The functional form isn’t really important - the important point is that ζ is nearly a linear 
function of PM: 
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So can often predict (effective) damping ratio using approximation 

PM 
ζ « (PM in degrees) 

100 

Even when system is not second order, PM is a good predictor of peak overshoot (Mp), and 
resonant peak magnitude (Mr). PM is often specified as a design requirement. 

Bode’s Gain-Phase Relationship 

We saw that for poles and zeros in the left-half-plane, the phase of Gpjωq is proportional to 
the slope of the magnitude curve (on a log-log scale), but smeared-out. That is, 

=Gpjωq « 90˝ 
ˆ slope of |G| 

This idea can be made precise via Bode’s gain-phase theorem: 

For any stable, minimum phase system, the phase of Gpjωq can 
be determined uniquely from the magnitude of Gpjωq. 

3
 



The phase is in fact given by 

ż 81 dM 
=Gpjωq “ W puqdu 

π du´8 

where 

M “ log |Gpjωq| (natural log) 
u “ logpω{ω0q

dM 
“ slope of Bode plot magnitude 

du 
W puq “ weighting function 

101
“ logpcothp qq

2 

Note that this is a funny sort of convolution - we are convolving a weighting function with 
the slope of another function, but working on logarythmic axes! 

The weighting function looks like: 
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Note that 92% of area of W puq is within ̆ 1 decade of the center. So the phase is nearly 
completely determined by the slope of M within ~1 decade. 

Why is this result important? It implies that in almost every case, a well-designed control 
loop will have a magnitude plot with slope -1 at the crossovr frequency!1 

1Actually, in some cases, the slope might be +1, but this is rare. 
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In this case, the phase at cross-over will be a weighted average of ́ 90˝ (weighted a lot), 
´180˝ (weighted some), and 0˝ (weighted hardly at all). So the phase will be between ́ 90˝ 

and ́ 180˝, with probably reasonable PM. 
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