
16.06 Principles of Automatic Control
 
Lecture 20
 

Bode Plots With Complex Poles 

Suppose we have a proportional feedback system: 

-
+ k G(s)

What values of k will lead to instability? Before we answer that, let’s find out what values 
lead to neutral stability. Take, as an example, 

1 
Gpsq “ 

sps ` 1q2 

Using root locus and Routh, we can deduce that the C.L. system is stable for 

0 ă k ă 2 

The root locus diagram is: 
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k=2, ω=1

So neutral stability occurs for k “ 2, corresponding to closed-loop poles at ω “ ˘1. 

This result may be seen clearly on the Bode plot for this system. 
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Frequency, ω (rad/sec)

|G|=1/2 at ω=1

G=-180˚ at ω=1

Recall that the root locus condition is that 

kG “ 1
 

2
 



or
 

G “ ´1{k
 

For there to be a closed loop pole on the jω axis for k ą 0, we must have that two conditions 
hold. First, G must have phase of ́ 180˝ . The only frequency at which this happens is ω “ 1 
rad/sec. Second, we must have that 

|kG| “| ´ 1| “ 1 
1

ñ k “ 
|G| 

In this case, |G| “ 1{2 at ω “ 1, so k “ 2 is the required gain to place a pair of poles on the
 
jω axis.
 

So the Bode plot plays a key role in stability analysis. We already have a partial result:
 

If the open-loop system KGpsq is stable, and |KGpjωq| ă 1 for 
all ω such that =KGpjωq “ 180˝p mod 360˝q, then the closed-
loop system is stable. 

This result follows from our R.L. analysis.
 

Note that the converse statement is not true,that is, there may be frequencies ω such that
 
|KGpjωq| ą 1 and =KGpjωq “ 180˝, and yet the closed loop system is stable.
 

The Nyquist Criterion is the Frequency Response analogue of the Routh Criterion - it allows
 
us to count the number of closed-loop, unstable poles. The Nyquist Criterion depends on
 
Cauchy’s Principle of the Argument, or simply the argument principle.
 

The Argument Principle 

Consider a transfer function H1psq with pole/zero diagram 

Im(s)

Re(s)
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kπps ´ ziq
H1psq “ 

πps ´ piq 

We are going to evaluate H1psq point-by-point around the contour C1 : 
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At each point on the contour, we calculate H1psq and plot: 
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At any point, say s0, the phase of H1ps0q is 

ÿ ÿ

α “ =H1ps0q “ =ps0 ´ ziq ´ =ps0 ´ piq
ÿ ÿ

“ Ψi ´ φi 

As we go around the contour (in this example), each Ψi and φi increases and decreases, but 
returns to its original value after completing exactly one circuit. 

Consider a second example, H2 : 
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In this case, as we move once around C1, Ψi, Ψ2, and φ1 return to their original values, 
but φ2 decreases by a net 360˝ . As a result, α “ =H2 increases by a net 360˝ . But this is 
equivalent to saying that H2pC1q encircles the origin exactly once in a clockwise direction. 

More generally, the contour map H2pC1q encircles the origin counter-clockwise for each pole 
inside C1, and clockwise for each zero. More succinctly, for a clockwise contour C1, 

# of clockwise encirclements of the origin by HpC1q= Z - P 

where Z = # of zeros of Hpsq inside C1; 

and P = # of poles of Hpsq inside C1. 
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