16.06 Principles of Automatic Control Lecture 20

Bode Plots With Complex Poles

Suppose we have a proportional feedback system:

What values of k will lead to instability? Before we answer that, let's find out what values lead to neutral stability. Take, as an example,

$$
G(s)=\frac{1}{s(s+1)^{2}}
$$

Using root locus and Routh, we can deduce that the C.L. system is stable for

$$
0<k<2
$$

The root locus diagram is:

So neutral stability occurs for $k=2$, corresponding to closed-loop poles at $\omega= \pm 1$. This result may be seen clearly on the Bode plot for this system.

Recall that the root locus condition is that

$$
k G=1
$$

or

$$
G=-1 / k
$$

For there to be a closed loop pole on the $j \omega$ axis for $k>0$, we must have that two conditions hold. First, G must have phase of -180°. The only frequency at which this happens is $\omega=1$ $\mathrm{rad} / \mathrm{sec}$. Second, we must have that

$$
\begin{aligned}
& |k G|=|-1|=1 \\
& \Rightarrow k=\frac{1}{|G|}
\end{aligned}
$$

In this case, $|G|=1 / 2$ at $\omega=1$, so $k=2$ is the required gain to place a pair of poles on the $j \omega$ axis.

So the Bode plot plays a key role in stability analysis. We already have a partial result:
If the open-loop system $K G(s)$ is stable, and $|K G(j \omega)|<1$ for all ω such that $\angle K G(j \omega)=180^{\circ}\left(\bmod 360^{\circ}\right)$, then the closedloop system is stable.

This result follows from our R.L. analysis.
Note that the converse statement is not true, that is, there may be frequencies ω such that $|K G(j \omega)|>1$ and $\angle K G(j \omega)=180^{\circ}$, and yet the closed loop system is stable.
The Nyquist Criterion is the Frequency Response analogue of the Routh Criterion - it allows us to count the number of closed-loop, unstable poles. The Nyquist Criterion depends on Cauchy's Principle of the Argument, or simply the argument principle.

The Argument Principle

Consider a transfer function $H_{1}(s)$ with pole/zero diagram

$$
H_{1}(s)=\frac{k \pi\left(s-z_{i}\right)}{\pi\left(s-p_{i}\right)}
$$

We are going to evaluate $H_{1}(s)$ point-by-point around the contour C_{1} :

At each point on the contour, we calculate $H_{1}(s)$ and plot:

At any point, say s_{0}, the phase of $H_{1}\left(s_{0}\right)$ is

$$
\begin{aligned}
\alpha=\angle H_{1}\left(s_{0}\right) & =\sum \angle\left(s_{0}-z_{i}\right)-\sum \angle\left(s_{0}-p_{i}\right) \\
& =\sum \Psi_{i}-\sum \phi_{i}
\end{aligned}
$$

As we go around the contour (in this example), each Ψ_{i} and ϕ_{i} increases and decreases, but returns to its original value after completing exactly one circuit.

Consider a second example, H_{2} :

In this case, as we move once around $C_{1}, \Psi_{i}, \Psi_{2}$, and ϕ_{1} return to their original values, but ϕ_{2} decreases by a net 360°. As a result, $\alpha=\angle H_{2}$ increases by a net 360°. But this is equivalent to saying that $H_{2}\left(C_{1}\right)$ encircles the origin exactly once in a clockwise direction.

More generally, the contour map $H_{2}\left(C_{1}\right)$ encircles the origin counter-clockwise for each pole inside C_{1}, and clockwise for each zero. More succinctly, for a clockwise contour C_{1},

$$
\text { \# of clockwise encirclements of the origin by } H\left(C_{1}\right)=\mathrm{Z}-\mathrm{P}
$$

where $\mathrm{Z}=\#$ of zeros of $H(s)$ inside C_{1}; and $\mathrm{P}=\#$ of poles of $H(s)$ inside C_{1}.

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

