16.06 Principles of Automatic Control Lecture 9

Unity Feedback Control With Noise

Consider a typical unity feedback control system

 e^\prime is the error perceived by the control system; e is the actual error. The important transfer functions are

$$\frac{Y}{R}(s) = \frac{1}{1 + K(s)G(s)} \equiv S(s)$$
$$\frac{E}{D}(s) = \frac{-1}{1 + K(s)G(s)} \equiv -S(s)$$
$$\frac{E}{V}(s) = \frac{-K(s)G(s)}{1 + K(s)G(s)} \equiv -T(s)$$

S(s) =Sensitivity transfer function T(s) =Complementary Sensitivity transfer function

For low sensitivity to disturbances, want:

$$|S(s)| \ll 1$$

For good tracking of the reference input, want:

 $|S(s)| \ll 1$

For low sensitivity to sensor noise or errors, want:

 $|T(s)| \ll 1$

But these goals are mutually exclusive, since

$$S(s) + T(s) = 1$$

So there is a fundamental trade-off between good tracking performance and low sensitivity to sensor noise.

How is this trade-off addressed?

In most (not all) systems, want good tracking performance at low frequency, low sensitivity to sensor noise at high frequency:

- Reference inputs are low frequency
- Sensor noise is usually high frequency

So let's look at the lowest frequency, $\omega = 0$ (s = 0)...

Steady-State Errors

Consider a unity feedback system without sensor noise or disturbance:

For stability, define

L(s) = K(s)G(s) = "Loop Gain"

What is the steady-state error to a unit step input?

Use LTs:

$$E(s) = S(s)R(s) = \frac{1}{1 + L(s)}R(s) = \frac{1}{1 + L(s)}\frac{1}{s}$$

To find the *steady* error, use final value theorem:

$$\lim_{s \to 0} e(t) = \lim_{s \to 0} sE(s) = \frac{1}{1 + L(0)}$$

If L(0) is finite, we define

 $K_p \equiv L(0) =$ "positive error constant"

Furthermore, if L(0) is finite, we say that a system is a "type 0 system".

So a type 0 system will always have a finite error in response to a steady input r, but the error can be made small by making the position error constant large.

To make the steady error zero, we must have that L(0) is *infinite*. Suppose we can express L(s) as

$$L(s) = \frac{L_0(0)}{s}$$

where $L_0(0) \neq 0$, $L_0(0)$ is finite. Then L is a "type 1 system" (one pole at s = 0). We have that

$$\lim_{s \to 0} e(t) = \lim_{s \to 0} s \frac{1}{1 + \frac{L_0(s)}{s}} \frac{1}{s} = \lim_{s \to 0} \frac{s}{s + L_0(s)} = 0$$

since $L_0(0) \neq 0$.

What if we want to track a unit ramp instead?

$$r(t) = tr(t)$$
$$\Rightarrow R(s) = \frac{1}{s^2}$$

The steady-state error for a type 0 system will be

$$\begin{split} e_{ss} &= \lim_{s \to 0} sS(s)R(s) \\ &= \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s^2} \\ &= \lim_{s \to 0} \frac{1}{1 + L(0)} \frac{1}{s} = \infty \end{split}$$

The steady-state error for a type 1 system will be

$$e_{ss} = \lim_{s \to 0} sS(s)R(s)$$

= $\lim_{s \to 0} s \frac{1}{1 + \frac{L_0(s)}{s}} \frac{1}{s^2}$
= $\lim_{s \to 0} \frac{1}{s + L_0(s)}$
= $\frac{1}{L_0(s)}$

which is finite. We define

 $K_v = L_0(s) =$ "velocity error constant"

More generally, suppose that L(s) has the form

$$L(s) = \frac{L_0(s)}{s^n}$$

L is said to be a type n system, and the error constant is K_p , or K_v or K_a ... = $L_0(0)$.

$$K_{p} = K_{0} = \lim_{s \to 0} L(s), \quad n = 0$$

$$K_{v} = K_{1} = \lim_{s \to 0} sL(s), \quad n = 1$$

$$K_{a} = K_{2} = \lim_{s \to 0} s^{2}L(s), \quad n = 2$$

:

Input			
Type	$\sigma(\mathbf{t})$	$\mathbf{t}\sigma(\mathbf{t})$	$\frac{\mathbf{t}^2}{2}\sigma(\mathbf{t})$
Type 0	$e_{ss} = \frac{1}{1+K_p}$	$e_{ss} = \infty$	$e_{ss} = \infty$
Type 1	0	$\frac{1}{K_v}$	∞
Type 2	0	0	$\frac{1}{K_a}$

Obviously, this generalizes, but we usually care most about K_p and K_v - higher order inputs are rare.

16.06 Principles of Automatic Control Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.