
16.06 Principles of Automatic Control
 
Lecture 9
 

Unity Feedback Control With Noise 

Consider a typical unity feedback control system 

-
+ K(s) G(s)

yr
++

+

e’ e

v

controller plant
disturbance

sensor noise

d,

-

e1 is the error perceived by the control system; e is the actual error. The important transfer 
functions are 

Y 1 
psq “ ” Spsq

R 1 ` KpsqGpsq

E ´1 
psq “ ” ´Spsq

D 1 ` KpsqGpsq

E ´KpsqGpsq
psq “ ” ´T psq

V 1 ` KpsqGpsq 

Spsq “Sensitivity transfer function 
T psq “Complementary Sensitivity transfer function 
For low sensitivity to disturbances, want: 

|Spsq| ! 1 
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For good tracking of the reference input, want: 

|Spsq| ! 1 

For low sensitivity to sensor noise or errors, want: 

|T psq| ! 1 

But these goals are mutually exclusive, since 

Spsq ` T psq “ 1 

So there is a fundamental trade-off between good tracking performance and low sensitivity
 
to sensor noise.
 

How is this trade-off addressed?
 
In most (not all) systems, want good tracking performance at low frequency, low sensitivity
 
to sensor noise at high frequency:
 

- Reference inputs are low frequency 

- Sensor noise is usually high frequency 

So let’s look at the lowest frequency, ω “ 0 ps “ 0q... 

Steady-State Errors 

Consider a unity feedback system without sensor noise or disturbance: 
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For stability, define 

Lpsq “ KpsqGpsq “ "Loop Gain" 

What is the steady-state error to a unit step input? 
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Use LTs: 

1 1 1 
Epsq “ SpsqRpsq “ Rpsq “ 

1 ` Lpsq 1 ` Lpsq s 

To find the steady error, use final value theorem: 

1 
lim eptq “ lim sEpsq “ 
sÑ0 sÑ0 1 ` Lp0q 

If L(0) is finite, we define 

Kp ” Lp0q “ "positive error constant" 

Furthermore, if L(0) is finite, we say that a system is a “type 0 system”. 
So a type 0 system will always have a finite error in response to a steady input r, but the 
error can be made small by making the position error constant large. 
To make the steady error zero, we must have that L(0) is infinite. Suppose we can express 
L(s) as 

L0p0q
Lpsq “ 

s 

where L0p0q ‰ 0, L0p0q is finite. Then L is a “type 1 system” (one pole at s “ 0). We have 
that 
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1 1 s 
lim eptq “ lim s “ lim “ 0 
sÑ0 sÑ0 1 ` L0psq s sÑ0 s ` L0psq

s 

since L0p0q ‰ 0.
 

What if we want to track a unit ramp instead?
 

rptq “trptq

1
ñ Rpsq “ 

s2 

The steady-state error for a type 0 system will be 

ess “ lim sSpsqRpsq
sÑ0 

1 1
“ lim s 

sÑ0 1 ` Lpsq s2 

1 1
“ lim “ 8 

sÑ0 1 ` Lp0q s 

The steady-state error for a type 1 system will be 

ess “ lim sSpsqRpsq
sÑ0 

1 1
“ lim s 

2sÑ0 1 ` L0psq s
s 

1
“ lim 

sÑ0 s ` L0psq

1
“ 
L0psq 

which is finite. We define 

Kv “ L0psq “ "velocity error constant" 

More generally, suppose that L(s) has the form 

L0psq
Lpsq “ 

sn 

L is said to be a type n system, and the error constant is Kp,or Kv or Ka... “ L0p0q. 
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Kp “K0 “ lim Lpsq, n “ 0 
sÑ0 

Kv “K1 “ lim sLpsq, n “ 1 
sÑ0 

Ka “K2 “ lim s 2Lpsq, n “ 2 
sÑ0 

. . . 

Input 
Type σptq tσptq t2 

2 σptq
Type 0 ess “ 1 

1`Kp 
ess “ 8 ess “ 8 

Type 1 0 1 
Kv 

8 
Type 2 0 0 1 

Ka 

Obviously, this generalizes, but we usually care most about Kp and Kv - higher order inputs 
are rare. 
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