16.06 Principles of Automatic Control Lecture 32

(continued from previous lecture..)
Note the much improved response. Now we have:

$$
\begin{array}{cc}
M_{p}=0.246 & \text { (cont.) } \\
M_{p}=0.231 & \text { (disc.) }
\end{array}
$$

- very close!

Full cycle processing delay

What happens when processing delay is a full period, T ? In the textbook, this case is described as requiring that the numerator of K_{d} must have one less power of z than the denominator. However, in the emulation approach, this might be tricky.

The solution is to account for the delay in G_{d} by adding the factor $1 / z$, which is the z transform of a one sample delay. So for the previous example, we would have:

$$
G_{d}(z)=0.0003099 \frac{z+0.9917}{(z-1)(z-0.9753) z}
$$

So now we have an effective delay of $\frac{3}{2} T, \frac{1}{2} T$ from the ZOH, and T from the processing delay. Let's redo the design assuming this larger delay:

$$
\begin{aligned}
\angle K(j 10) & =-G(j 10)-180^{\circ}+\mathrm{PM}+\frac{3}{2} \omega_{c} T \cdot \frac{180^{\circ}}{\pi} \\
& =65.9^{\circ}
\end{aligned}
$$

So the lead ratio satisfies

$$
\sqrt{\frac{b}{a}}=4.685
$$

So let

$$
\begin{array}{r}
b=47 \mathrm{r} / \mathrm{s} \\
a=2.1 \mathrm{r} / \mathrm{s}
\end{array}
$$

The continuous compensator is

$$
K(s)=21.1 \frac{1+s / 2.1}{1+s / 47}
$$

Using the Tustin transform, we obtain:

$$
K_{d}(z)=305.3 \frac{z-0.9488}{z-0.2598}
$$

See the step response below. Why is the continuous and discrete response so different? $K(s)$ for the continuous system and $K_{d}(s)$ for the discrete system are different - they have different DC gains and different lag ratios. As a result, the Bode plots for the loop gains are significantly different (see the plot below).

Discrete Design

Can also design directly in z-plane, using root locus or other tools.
When we designed $K_{d}(z)$ using emulation methods, we needed $G_{d}(z)$ only to rest our result, not to do the design, for which we only needed $G(s)$. (We also calculated the equivalent delay, $T / 2$ or $3 T / 2$.)
For discrete design, however, we need $G_{d}(z)$, which may be calculated as

$$
G_{d}(z)=\left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{G(s)}{s}\right\}
$$

Example

$$
G(s)=\frac{1}{s(s+1)}, \quad T=0.025
$$

$$
\begin{aligned}
\frac{G(s)}{s} & =\frac{1}{s^{2}(s+1)}=\frac{1}{s+1}+\frac{1}{s^{2}}-\frac{1}{s} \\
\left.\mathcal{Z} \frac{G(s)}{s}\right\} & =\frac{z}{z-e^{-T}}+\frac{T z}{(z-1)^{2}}-\frac{z}{z-1} \\
G_{d}(z) & \left.=\frac{z-1}{z} \mathcal{Z} \frac{G(s)}{s}\right\} \\
& =\frac{z-1}{z-e^{-T}}+\frac{T}{z-1}-1 \\
& =\frac{z-1}{z-0.9753}+\frac{0.025}{z-1}-1 \\
& =\frac{0.0003099 z+0.0003073}{z^{2}-1.9753 z+0.9753}
\end{aligned}
$$

as before.

The basic control laws:

Proportional:

$$
u[k]=K_{p} e[k] \Rightarrow K(z)=K_{p}
$$

Derivative:

$$
\begin{aligned}
u[k] & =K_{D} \frac{(e[k]-e[k-1])}{T} \\
& =k_{D}(e[k]-e[k-1]) \\
\Rightarrow K_{d}(z) & =k_{D}\left(1-z^{-1}\right)=k_{d} \frac{z-1}{z}
\end{aligned}
$$

Integral:

$$
\begin{aligned}
u[k] & =u[k-1]+K_{I} \cdot T e[k] \\
\Rightarrow\left(1-z^{-1}\right) U(z) & =K_{I} \cdot T E(z) \\
\Rightarrow K_{d}(z) & =K_{I} T \frac{z}{z-1}=k_{I} \frac{z}{z-1}
\end{aligned}
$$

Lead:

$$
K_{d}(z)=k \frac{z-\alpha}{z-\beta}, \quad \alpha>\beta
$$

Example

Design a digital controller for the plant

$$
G(s)=\frac{1}{s^{2}}
$$

with sample period $T=1 \mathrm{sec}$, so that $\omega_{n} \approx 0.3 \mathrm{r} / \mathrm{s}$, and $\zeta=0.7$.
The discretization plant is

$$
G_{d}(z)=\frac{T^{2}}{2} \frac{z+1}{(z-1)^{2}}=\frac{1}{2} \frac{z+1}{(z-1)^{2}}
$$

We want the closed loop poles to be at

$$
\begin{aligned}
z & =e^{s T} \\
s_{1} & =-\zeta \omega_{n} \pm j \sqrt{1-\rho^{2}} \omega_{n} \\
& =-0.21 \pm j 0.21
\end{aligned}
$$

So we want the dominant closed-loop poles at

$$
z=0.791 \pm 0.170 j \text { (book slightly off) }
$$

Proportional gain does not work, since the locus is

which is entirely outside the unit circle. Instead, use a PD controller, which will be of the form

$$
K_{d}(z)=k \frac{z-\alpha}{z}
$$

So new root locus will be:

Choose α to get angle condition right

$$
\begin{aligned}
\phi_{1} & =\phi_{2}=\angle(z-1)=140.9^{\circ} \\
\phi_{3} & =\angle(z-0)=12.2^{\circ} \\
\Psi_{1} & =\angle(z-(-1))=5.4^{\circ}
\end{aligned}
$$

We need

$$
\begin{aligned}
-\phi_{1} & -\phi_{2}-\phi_{3}+\Psi_{1}+\Psi_{2}=-180 \\
\Rightarrow \Psi_{2} & =108.4^{\circ}=\angle(z-\alpha) \\
& =\tan ^{-1}\left(\frac{0.170}{0.791-\alpha}\right) \\
\Rightarrow \alpha & =+0.8475
\end{aligned}
$$

So controller is

$$
K_{d}(z)=k \frac{z-0.8475}{z}
$$

To find k, use gain condition

$$
\begin{aligned}
& \left|K_{d}(z) G_{d}(z)\right|=1 \text { at C. L. pole } \\
& \Rightarrow k=0.3647 \\
& \quad K_{d}(z)=0.3647 \frac{z-0.8475}{z}
\end{aligned}
$$

The step response is shown below. Notice that the overshoot is significant - much more than would be expected with $\zeta=0.707$, due to zero of the compensator.
So let's put derivative term in a minor loop:

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

