16.06 Principles of Automatic Control Recitation 9

Design a lead compensator for $G(s)=\frac{3}{(s+1)^{2}}$ such that:
$\omega_{c}=50 \mathrm{rad} / \mathrm{sec}$
$\mathrm{PM}=50^{\circ}$
$K(s)=K \frac{1+s / a}{1+s / b}$
Bode Plot:

We want $\omega_{c}=10 \mathrm{rad} / \mathrm{sec}$ and $\mathrm{PM}=50^{\circ}$. Our lead compensator will add phase to the system, but we need to specify how much phase to add.

Current phase at ω_{c} is
$-2 \tan ^{-1}\left(\sqrt{\frac{b}{a}}\right)-90^{\circ}=38.6^{\circ}$

$$
\begin{equation*}
\sqrt{\frac{b}{a}}=2.08 \tag{1}
\end{equation*}
$$

Strategically place pole and zero symmetrically about crossover (in log scale):

$$
\omega_{c}=\sqrt{a b}=10 \ldots(2)
$$

where $\sqrt{a b}$ is the geometric mean.
Now solve (1) and (2) for a and b :

$$
\begin{aligned}
a & =4.8 \\
b & =20.8
\end{aligned}
$$

Now, to find the gain, use the condition that $\left|K\left(j \omega_{c}\right) G\left(j \omega_{c}\right)\right|=1$:

$$
\begin{gathered}
\frac{K \cdot 3 \sqrt{1^{2}+\left(\frac{10}{4.8}\right)^{2}}}{\left(1^{2}+10^{2}\right) \sqrt{1^{2}+\left(\frac{10}{20.8}\right)^{2}}}=1 \\
\hookrightarrow \quad \text { double pole } \\
K \approx 16.1 \\
K(s)=16.1 \cdot \frac{\left(1+\frac{s}{4.8}\right)}{\left(1+\frac{s}{20.8}\right)}
\end{gathered}
$$

Now, we add the requirement of having $K_{p}=200$.
We need to design an additional lag compensator, but this will add about 6° phase lag at ω_{c}.
So we need to redesign our lead compensator to account for this 6° phase lag:
$\phi_{\max }=38.6^{\circ}+6^{\circ}=44.6^{\circ}=2 \tan ^{-1}\left(\sqrt{\frac{b}{a}}\right)-90^{\circ}$
$\therefore \sqrt{\frac{b}{a}}=2.39 \rightarrow$ see equation (2) above: $\omega_{c}=\sqrt{a b}=10$.
$b=23.9$
$a=4.18$
and we find out new $K=14.07$.

$$
K_{p}=\lim _{s \rightarrow 0}\left(14.07 \frac{1+\frac{s}{4.18}}{1+\frac{s}{23.9}}\right) \cdot \frac{3}{(s+1)^{2}}=42.2
$$

Need our lag ratio to be

$$
\frac{K_{p \text { desired }}}{K_{p \text { current }}}=\frac{200}{42.2}=4.74
$$

We can place the zero of the lag compensator $\sim 1^{\circ}$ below:
$\omega_{c}=10 \rightarrow \frac{s+1}{s+?} \rightarrow$
set pole to satisfy the lag ratio
of 4.74 ; i.e. at 0.21.

$$
\begin{aligned}
\therefore K(s) & =14.07 \frac{1+s / 4.18}{1+s / 23.9} \cdot \frac{s+1}{s+0.21} \\
\mathrm{PM} & =51.5^{\circ} \\
\omega_{c} & =10.0
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

