16.06 Principles of Automatic Control Lecture 25

Lead Compensation

One problem with PD controller is that the gain gets large at high frequencies. So instead use lead compensator

$$
K(s)=k \frac{1+s / a}{1+s / b}
$$

What is the strategy? Look at Bode plot:

To get most phase lead for given lead ratio (b / a), place pole and zero symmetrically around desired crossover. This maximizes average slope near crossover.

The magnitude and phase of a lead compensator are

The phase of the lead compensator is

$$
\angle K=\tan ^{-1} \omega / a-\tan ^{-1} \omega / b
$$

The maximum phase lead is

$$
\begin{aligned}
(\angle K)_{\max } & =\tan ^{-1} \frac{\sqrt{a b}}{a}-\tan ^{-1} \frac{\sqrt{a b}}{b} \\
& =\tan ^{-1} \sqrt{b / a}-\tan ^{-1} \sqrt{a / b} \\
& =2 \tan ^{-1} \sqrt{b / a}-90^{\circ}
\end{aligned}
$$

So to get 60° phase lead (for this example), need lead ratio

$$
\frac{b}{a}=13.92
$$

So take

$$
\left.\begin{array}{r}
a=0.35 \mathrm{r} / \mathrm{s} \\
b=4.9 \mathrm{r} / \mathrm{s}
\end{array}\right\} \text { symmetric about } \omega_{c}=1.3
$$

As $\omega_{c}=1.3 \mathrm{r} / \mathrm{s}$,

$$
\begin{aligned}
|G| & =\frac{1}{1.3^{2}}=0.5917 \\
|K| & =k \cdot \sqrt{\frac{b}{a}}=3.73 k
\end{aligned}
$$

Therefore, $|G K|=1 \quad \Rightarrow \quad k=0.453$. The compensator is then

$$
K(s)=0.453 \frac{1+s / 0.35}{1+s / 4.9}
$$

Again from Matlab,

$$
\begin{aligned}
t_{r} & =0.91 \mathrm{sec}, \text { good! } \\
M_{p} & =19 \%, \text { not to spec. }
\end{aligned}
$$

Lead Compensation to achieve minimum K_{p}.

The example is similar to, but not identical to, FPE example 6.15.
The problem is to control the plant

$$
G(s)=\frac{1}{(1+s / 0.5)(1+s)(1+s / 2)}
$$

So that

$$
K_{p}=9
$$

$$
\mathrm{PM} \geqslant 30^{\circ}
$$

$K_{p}=9$ guarantees only 10% tracking error in steady state; $\mathrm{PM} \geqslant 30^{\circ}$ ensures a minimum stability margin.

First, consider a proportional controller, with unity feedback

$$
K(S)=k_{p}=9 \quad(\text { since } G(0)=1)
$$

Then the control system has

$$
\begin{aligned}
K_{p} & =9 \quad \text { (as required) } \\
\mathrm{PM} & =7.1^{\circ} \quad(\text { too low })
\end{aligned}
$$

So need to add lead compensation to increase PM.
Bode:

To get better slope at crossover, add lead compensator. It's convenient to place zero at $s=-1$, since this cancels plant pole, and makes Bode plot simpler. Working out the geometry, this puts the cross-over at

$$
\omega_{c}=3 \mathrm{r} / \mathrm{s}
$$

at least using the straight line approximation.
Our goal is to use the smallest b that meets specs. At crossover, the phase is

$$
\begin{aligned}
\angle G K & =-\tan ^{-1}\left(\frac{3}{0.5}\right)-\tan ^{-1}\left(\frac{3}{2}\right)-\tan ^{-1}\left(\frac{3}{b}\right) \\
& =-136.9^{\circ}-\tan ^{-1}\left(\frac{3}{b}\right) \\
& =-150^{\circ} \quad\left(\text { for } \mathrm{PM}=30^{\circ}\right)
\end{aligned}
$$

Solving for b,

$$
b=12.8 \mathrm{r} / \mathrm{s}
$$

So trial controller is

$$
K(s)=9 \frac{1+s}{1+s / 12}
$$

Using Matlab, found

$$
\begin{aligned}
\omega_{c} & =2.62 \mathrm{r} / \mathrm{s} \\
\mathrm{PM} & =36.5^{\circ}
\end{aligned}
$$

Phase margin is larger than required, so can reduce phase lead by 6.5° at (new) ω_{c}.

$$
\begin{aligned}
\angle G K & =-\tan ^{-1}\left(\frac{2.62}{0.5}\right)-\tan ^{-1}\left(\frac{2.62}{2}\right)-\tan ^{-1}\left(\frac{2.62}{b}\right) \\
& =-150^{\circ}
\end{aligned}
$$

Solving for b, we have

$$
b=8
$$

So new controller is

$$
K(s)=9 \frac{1+s}{1+s / 8}
$$

which has

$$
\begin{aligned}
\omega_{c} & =2.58 \mathrm{r} / \mathrm{s} \\
\mathrm{PM} & =30.9^{\circ}
\end{aligned}
$$

$D O N E!$ The step response is shown in the figure below. Note that M_{p} is larger than would be expected $(\approx 37 \%)$ given the PM. This is typical of systems with modest k_{p}.

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

