Similarity Rules

Consider the linearized equation for the perturbation equation $\Phi_{1}(x, y)$ in plane, steady flow:

$$
\left(1-M_{\infty}^{2}\right) \frac{\partial^{2} \Phi_{1}}{\partial x^{2}}+\frac{\partial^{2} \Phi_{1}}{\partial y^{2}}=0
$$

Now, consider two separate flows with their mach numbers $M_{\infty_{1}}$ and $M_{\infty_{2}}$.

$$
\begin{aligned}
& 0<M_{\infty_{1}}<1 \\
& 0<M_{\infty_{2}}<1 \\
& M_{\infty_{1}} \neq M_{\infty_{2}}
\end{aligned}
$$

Also:

$$
\begin{gathered}
V_{\infty_{1}}=\text { Free stream velocity } \\
c=\text { Airfoil chord } \\
\mathrm{T}_{1}=\text { Thickness ratio }=t_{1} / c \\
y=t_{1} f_{1}\left(\frac{x}{c}\right)=\mathrm{T}_{1} c f_{1}\left(\frac{x}{c}\right) \\
y=\text { Airfoil shape/boundary } \\
\text { or } \\
\frac{y}{c}=\mathrm{T}_{1} f_{1}\left(\frac{x}{c}\right)
\end{gathered}
$$

The boundary condition on the airfoil surface may be written

$$
\left(\frac{\partial \Phi_{1}}{\partial y}\right)_{y=0}=U_{\infty_{1}}\left(\frac{d y}{d x}\right)_{B o d y}=U_{\infty_{1}} \mathrm{~T}_{1} f_{1}^{\prime}\left(\frac{x}{c}\right)
$$

From lecture notes, the linearized pressure coefficient may be written

$$
C_{p_{1}}=-\frac{2}{U_{\infty_{1}}}\left(\frac{\partial \Phi_{1}}{\partial x}\right)_{y=0}
$$

Now consider a second flow:

$$
\Phi_{2}=\Phi_{2}(\xi, \eta)
$$

Assume:

$$
\begin{gathered}
\Phi_{1}(x, y)=A \frac{U_{\infty_{1}}}{U_{\infty_{2}}} \Phi_{2}(\xi, \eta) \\
\Phi_{1}(x, y)=A \frac{U_{\infty_{1}}}{U_{\infty_{2}}} \Phi_{2}\left(x,\left(\frac{1-M_{\infty_{1}}^{2}}{1-M_{\infty_{2}}^{2}}\right)^{1 / 2} y\right)
\end{gathered}
$$

Where

$$
\mathrm{A}=\text { constant, to be determined }
$$

And

$$
\begin{gathered}
\xi=x \\
2=\left(\frac{1-M_{\infty}^{2}}{1-M_{\infty}^{2}}\right)^{1 / 2} y
\end{gathered}
$$

Hence, equation governing $\Phi_{2}(\xi, \eta)$ becomes

$$
\left(1-M_{\infty_{2}}^{2}\right) \frac{\partial^{2} \Phi_{2}}{\partial \xi^{2}}+\frac{\partial^{2} \Phi_{2}}{\partial \eta^{2}}=0
$$

Recall:
$\Phi_{1}(x, y)$ is a solution corresponding to $M_{\infty_{1}}$
$\Phi_{2}(\xi, \eta)$ is a solution corresponding to $M_{\infty_{2}}$

The boundary condition along the airfoil profile may be written:

$$
\begin{aligned}
\left(\frac{\partial \Phi_{1}}{\partial x}\right)_{y=0}= & A \frac{U_{\infty_{1}}}{U_{\infty_{2}}}\left(\frac{1-M_{\infty_{1}}^{2}}{1-M_{\infty_{2}}^{2}}\right)^{1 / 2}\left(\frac{\partial \Phi_{2}}{\partial \eta}\right)_{\eta=0} \\
& =U_{\infty_{1}} \mathrm{~T}_{1} f_{1}^{\prime}\left(\frac{x}{c}\right)
\end{aligned}
$$

Now let:

$$
\mathrm{T}_{1}=A \sqrt{\frac{1-M_{\infty_{1}}^{2}}{1-M_{\infty_{2}}^{2}}} \mathrm{~T}_{2}
$$

And let $f_{1}=f_{2}$ (f is the same in both flows) which means both airfoils are of the same family.
The boundary condition along the airfoil in (ξ, η) :

$$
\left(\frac{\partial \Phi_{2}}{\partial \eta}\right)_{\eta=0}=U_{\infty_{2}} \mathrm{~T}_{2} f_{2}^{\prime}\left(\frac{\xi}{c}\right)
$$

The pressure coefficient may be written

$$
C_{p_{1}}=-\frac{2}{U_{\infty_{1}}}\left(\frac{\partial \Phi_{1}}{\partial x}\right)_{y=0}=-\frac{2}{U_{\infty_{2}}} A\left(\frac{\partial \Phi_{2}}{\partial \xi}\right)_{\eta=0}
$$

Likewise:

$$
C_{p_{2}}=-\frac{2}{U_{\infty_{2}}}\left(\frac{\partial \Phi_{2}}{\partial \xi}\right)_{\eta=0}
$$

Therefore:

$$
\begin{gathered}
C_{p_{1}}=A C_{p_{2}} \\
A=\frac{A_{1}}{A_{2}}
\end{gathered}
$$

Two airfoils of the same family of shapes characterized by the thickness ratios T_{1} and T_{2} have pressure distributions given by coefficients $C_{p_{1}}$ and $C_{p_{2}}$. If the mach numbers of the flows are $M_{\infty_{1}}$ and $M_{\infty_{2}}$, respectively, then $C_{p_{1}}=C_{p_{2}}$ provided:

$$
\begin{gathered}
\mathrm{T}_{1}=A \sqrt{\frac{1-M_{\infty_{1}}^{2}}{1-M_{\infty_{2}}^{2}}} \mathrm{~T}_{2} \\
A=\frac{A_{1}}{A_{2}}
\end{gathered}
$$

Or, formally:

$$
\frac{C_{p}}{A}=f n\left(\frac{\mathrm{~T}}{A \sqrt{1-M_{\infty}^{2}}}\right)
$$

Recall A is a constant.

MIT OpenCourseWare
https://ocw.mit.edu/

16.121 Analytical Subsonic Aerodynamics

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

