16.121 ANALYTICAL SUBSONIC AERODYNAMICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Similarity Rules

Consider the linearized equation for the perturbation equation $\Phi_1(x, y)$ in plane, steady flow:

$$(1 - M_{\infty}^2)\frac{\partial^2 \Phi_1}{\partial x^2} + \frac{\partial^2 \Phi_1}{\partial y^2} = 0$$

Now, consider two separate flows with their mach numbers M_{∞_1} and M_{∞_2} .

$$0 < M_{\infty_1} < 1$$

$$0 < M_{\infty_2} < 1$$

$$M_{\infty_1} \neq M_{\infty_2}$$

Also:

$$V_{\infty_1} = \text{Free stream velocity}$$

$$c = \text{Airfoil chord}$$

$$T_1 = \text{Thickness ratio} = t_1/c$$

$$y = t_1 f_1(\frac{x}{c}) = T_1 c f_1(\frac{x}{c})$$

$$y = \text{Airfoil shape/boundary}$$
or
$$\frac{y}{c} = T_1 f_1(\frac{x}{c})$$

The boundary condition on the airfoil surface may be written

$$\left(\frac{\partial \Phi_1}{\partial y}\right)_{y=0} = U_{\infty_1} \left(\frac{dy}{dx}\right)_{Body} = U_{\infty_1} \mathrm{T}_1 f_1' \left(\frac{x}{c}\right)$$

From lecture notes, the linearized pressure coefficient may be written

$$C_{p_1} = -\frac{2}{U_{\infty_1}} \left(\frac{\partial \Phi_1}{\partial x}\right)_{y=0}$$

Now consider a second flow:

$$\Phi_2 = \Phi_2(\xi, \eta)$$

Assume:

$$\begin{split} \Phi_1(x,y) &= A \frac{U_{\infty_1}}{U_{\infty_2}} \Phi_2(\xi,\eta) \\ \Phi_1(x,y) &= A \frac{U_{\infty_1}}{U_{\infty_2}} \Phi_2(x, \left(\frac{1-M_{\infty_1}^2}{1-M_{\infty_2}^2}\right)^{1/2} y) \end{split}$$

Where

A = constant, to be determined

 $\xi = x$ $2 = \left(\frac{1 - M_{\infty_1}^2}{1 - M_{\infty_2}^2}\right)^{1/2} y$

And

Hence, equation governing $\Phi_2(\xi, \eta)$ becomes

$$(1 - M_{\infty_2}^2)\frac{\partial^2 \Phi_2}{\partial \xi^2} + \frac{\partial^2 \Phi_2}{\partial \eta^2} = 0$$

Recall:

 $\Phi_1(x, y)$ is a solution corresponding to M_{∞_1} $\Phi_2(\xi, \eta)$ is a solution corresponding to M_{∞_2}

The boundary condition along the airfoil profile may be written:

$$\left(\frac{\partial \Phi_1}{\partial x}\right)_{y=0} = A \frac{U_{\infty_1}}{U_{\infty_2}} \left(\frac{1-M_{\infty_1}^2}{1-M_{\infty_2}^2}\right)^{1/2} \left(\frac{\partial \Phi_2}{\partial \eta}\right)_{\eta=0}$$
$$= U_{\infty_1} \Gamma_1 f_1'\left(\frac{x}{c}\right)$$

Now let:

$$\mathbf{T}_{1} = A \sqrt{\frac{1 - M_{\infty_{1}}^{2}}{1 - M_{\infty_{2}}^{2}}} \mathbf{T}_{2}$$

And let $f_1 = f_2$ (f is the same in both flows) which means both airfoils are of the same family.

The boundary condition along the airfoil in (ξ, η) :

$$\left(\frac{\partial \Phi_2}{\partial \eta}\right)_{\eta=0} = U_{\infty_2} \mathrm{T}_2 f_2' \left(\frac{\xi}{c}\right)$$

The pressure coefficient may be written

$$C_{p_1} = -\frac{2}{U_{\infty_1}} \left(\frac{\partial \Phi_1}{\partial x}\right)_{y=0} = -\frac{2}{U_{\infty_2}} A \left(\frac{\partial \Phi_2}{\partial \xi}\right)_{\eta=0}$$

Likewise:

$$C_{p_2} = -\frac{2}{U_{\infty_2}} \left(\frac{\partial \Phi_2}{\partial \xi}\right)_{\eta=0}$$

Therefore:

$$C_{p_1} = AC_{p_2}$$
$$A = \frac{A_1}{A_2}$$

Two airfoils of the same family of shapes characterized by the thickness ratios T_1 and T_2 have pressure distributions given by coefficients C_{p_1} and C_{p_2} . If the mach numbers of the flows are M_{∞_1} and M_{∞_2} , respectively, then $C_{p_1} = C_{p_2}$ provided:

$$T_1 = A \sqrt{\frac{1 - M_{\infty_1}^2}{1 - M_{\infty_2}^2}} T_2$$
$$A = \frac{A_1}{A_2}$$

Or, formally:

$$\frac{C_p}{A} = f n \left(\frac{\mathrm{T}}{A\sqrt{1-M_{\infty}^2}}\right)$$

Recall A is a constant.

A Ср $f_n\left(\frac{\tau}{\sqrt{1-M_{\infty}^2}}\right)$ (1) 1 $\frac{1}{\sqrt{1-M_{00}^{2}}} fn(E)$ (2) VI-M2 $z fn(\sqrt{I-M_{\infty}^2})$ T (3) $\frac{1}{1-M_{\phi}^{2}} f_{n}\left(\mathbb{Z}\sqrt{1-M_{\phi}^{2}}\right)$ 1 1-M2 (4) (1), (2), (3) - PRANDEL-GLAUBER RUE (4) - GÖTHERT RULE

	A	Cp	COMMENTS
		T	GP INVARIANT WITH MOD IF
(')	1	th VI-Ma	$T/(I-M_{\phi}^2)^{\prime \mu} = CONSTANT.$
-			
(2)	1/(1-M2)	(1-Ma) fn(Z)	FOR A GIVEN MEMBER OF THE FAMILY OF SHAPES, GO INCREASES WITH M. AS
			(1-Ma) -42.
(3)	Z	T-fn (1/1-112)	1- IS PRADEFICALLY TO T FOR A
			FIXED VALLE OF Moo.
_			
	(1-M2)	(1-MZ) fn (Z/I-MZ)	CP INCREASES WITH MACH NUMBER AS
			(1-M0) IF I INCREASES AS
			$(1 - M_{0}^{2})^{1/2}$

16.121 Analytical Subsonic Aerodynamics Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.