Singular Perturbation Methods Formation of Shock Waves

Plane waves (small amplitude) in the absence of dissipation propagate without change in shape:

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}=a_{1}^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{0.1}\\
u(x, t)=F\left(x-a_{1} t\right)+G\left(x+a_{1} t\right) \tag{0.2}\\
u=\text { particle velocity } \\
a_{1}=\text { local speed of sound }
\end{gather*}
$$

For finite amplitude plane waves, with dissipation

$$
\begin{gather*}
c=a_{1} \pm \frac{\gamma+1}{2} u \tag{0.3}\\
c=a_{1}\left\{1 \pm \frac{\gamma+1}{\gamma-1}\left[\left(\frac{\rho}{\rho_{1}}\right)^{\frac{\gamma-1}{2}}-1\right]\right\} \tag{0.4}\\
c=\text { wave speed }
\end{gather*}
$$

Regions of higher condensation, $\frac{\rho}{\rho_{1}}>1$, overtake those of lower condensation.

- Produces steeping effect
- Non-linear convective terms < \gg diffusive terms
- Wave becomes "stationary"

Two time scales:
(A) Viscous diffusive terms balance steep gradients generated by piston initially
(B) Non-linear convective terms balance viscous diffusive terms

Model:
Continuum flow formulation (Navier-Stokes)
$\epsilon=$ piston mach number, $\epsilon \ll 1$
Boundary conditions for large time: matching principle of inner and outer expansions
Gas is viscous and heat conducting

Non-dimensionalization:

$$
\begin{gather*}
\mu^{*}=\epsilon \sqrt{R T_{0}} \mu \tag{0.5}\\
\rho^{*}=\rho_{0}^{*}(1+\epsilon \rho) \tag{0.6}\\
p^{*}=p_{0}^{*}(1+\epsilon p) \tag{0.7}\\
T^{*}=T_{0}^{*}(1+\epsilon T) \tag{0.8}\\
\mu^{*}=\mu_{0}^{*}(1+\epsilon \mu) \tag{0.9}\\
x^{*}=\left[\frac{\mu_{0}^{*}}{\rho_{0}^{*} \sqrt{R T_{0}^{*}}}\right] x \tag{0.10}\\
t^{*}=\left[\frac{\mu_{0}^{*}}{\rho_{0}^{*} R T_{0}^{*}}\right] t \tag{0.11}\\
()^{*}-\text { dimensional variable } \\
R-\text { gas constant } \\
\text { () })_{0}-\text { undisturbed value }
\end{gather*}
$$

Navier-Stokes Equations

$$
\begin{gather*}
\rho_{t}+\mu_{x}+\epsilon(\rho \mu)_{x}=0 \tag{0.12}\\
\mu_{t}+p_{x}-\mu_{x x}+\epsilon\left[\rho \mu_{t}+\mu \mu_{x}-\left(\mu \mu_{x}\right)_{x}\right]+\epsilon^{2} \rho \mu \mu_{x}=0 \tag{0.13}\\
T_{t}+(\gamma-1) \mu_{x}-\frac{\gamma}{\nabla} T_{x x}+\epsilon\left[\rho T_{t}+\mu T_{x}+(\gamma-1) p \mu_{x}-(\gamma-1) \mu_{x}^{2}-\frac{\gamma}{\nabla}\left(\mu T_{x}\right)_{x}\right]+\epsilon^{2}\left[\rho \mu T_{x}+(\gamma-1) \mu \mu_{x}^{2}\right]=0 \tag{0.14}\\
p=\rho+T+\epsilon \rho T \tag{0.15}
\end{gather*}
$$

$$
\rho=\text { specific heat ratio }
$$

$$
\nabla=\text { Prandtl number }
$$

Initial conditions

$$
\mu=\rho=\mathrm{p}=\mathrm{T}=0 ; x>0, t=0
$$

Boundary conditions (at piston)

$$
\mu=1, T_{x}=0 ; x=\epsilon t, t>0
$$

At infinity, damping conditions

$$
\mu, \rho, T \rightarrow 0, t>0, x \rightarrow \infty
$$

Expansion:

$$
\begin{equation*}
\mu^{o}=\mu_{0}^{o}+\epsilon \mu_{1}^{o}+\epsilon^{2} \mu_{2}^{o}+\ldots \tag{0.16}
\end{equation*}
$$

Linearized solutions, $\epsilon \rightarrow 0$ (small times) ("outer region")

$$
\begin{gather*}
\rho_{t}^{o}+\mu_{x}^{o}=0 \tag{0.17}\\
\mu_{t}^{o}+p_{x}^{o}-\mu_{x x}^{o}=0 \tag{0.18}\\
T_{t}^{o}+(\gamma-1) \mu_{x}^{o}-\frac{\gamma}{\delta} T_{x x}^{o}=0 \tag{0.19}\\
p^{o}=\rho^{o}+T^{o} \tag{0.20}
\end{gather*}
$$

Initial and boundary conditions

$$
\mu^{o}=\rho^{o}=T^{o}=0, x>0, t=0
$$

$$
\begin{gathered}
\mu^{o}=1, T_{x}^{o}=0, x=0, t>0 \\
\mu^{o}, \rho^{o}, T^{o} \rightarrow 0 ; t>0, x \rightarrow \infty
\end{gathered}
$$

Using Laplace transforms:

$$
\begin{gather*}
\overline{\mu^{o}}(x, s)=\int_{0}^{\infty} e^{-s t} \mu^{o}(x, t) d t \tag{0.21}\\
\mu^{o}(x, t) \sim \frac{1}{2} \operatorname{erfc}[(x-\sqrt{\gamma} t) / \sqrt{2 \beta t}]+o\left(t^{-\frac{1}{2}}\right) \tag{0.22}\\
\rho^{o}(x, t) \sim \frac{1}{\sqrt{\gamma}} \mu^{o}(x, t)+o\left(t^{-\frac{1}{2}}\right) \tag{0.23}\\
T^{o}(x, t) \sim \frac{(\gamma-1)}{\sqrt{\gamma}} \mu^{o}(x, t)+o\left(t^{-\frac{1}{2}}\right) \tag{0.24}\\
\beta \equiv 1+\frac{\gamma-1}{\nabla} \tag{0.25}
\end{gather*}
$$

Transformed (x, t)

$$
\begin{align*}
X & =(x-\sqrt{\gamma} t) / \sqrt{2 \beta} \tag{0.26}\\
\mu^{o}(x, t) & \sim \frac{1}{2} \operatorname{erfc}\left(\frac{X}{\sqrt{t}}\right)+o\left(t^{-\frac{1}{2}}\right) \tag{0.27}\\
\rho^{o}(x, t) & \sim \frac{1}{\sqrt{\gamma}} \mu^{o}(x, t)+o\left(t^{-\frac{1}{2}}\right) \tag{0.28}\\
T^{o}(x, t) & \sim \frac{\gamma-1}{\sqrt{\gamma}} \mu^{o}(x, t)+o\left(t^{-\frac{1}{2}}\right) \tag{0.29}
\end{align*}
$$

Solution at Large Times ("inner region")

Re-scale t :

$$
\begin{equation*}
\tau=\epsilon^{2} t \tag{0.30}
\end{equation*}
$$

(Linearized, outer solution breaks down when $\sqrt{t}=o\left(\frac{1}{\epsilon}\right)$ or $t=o\left(\frac{1}{\epsilon^{2}}\right)$)
Now require a shock thickness, on the inner scale, to be order unity:

$$
\begin{equation*}
\xi=\epsilon(x-\sqrt{\gamma} t)=\epsilon \sqrt{2 \beta} X \tag{0.31}
\end{equation*}
$$

Expansion

$$
\begin{equation*}
\mu^{i}=\mu_{0}^{i}+\epsilon \mu_{1}^{i}+\epsilon^{2} \mu_{2}^{i}+\ldots \tag{0.32}
\end{equation*}
$$

Substitute into Navier-Stokes equations, and obtain Burgers' equation:

$$
\begin{equation*}
\mu_{\tau}^{i}+\frac{1}{2}(\gamma+1) \mu^{i} \mu_{\xi}^{i}=\frac{1}{2} \beta \mu_{\xi \xi}^{i} \tag{0.33}
\end{equation*}
$$

Boundary conditions (matching principle):

$$
\begin{equation*}
\left(\mu^{i}\right)^{o}=\left(\mu^{o}\right)^{i} \tag{0.34}
\end{equation*}
$$

Initial conditions

$$
\begin{align*}
& \mu^{i}(\xi, 0)=0, \xi>0 \tag{0.35}\\
& \mu^{i}(\xi, 0)=1, \xi<0 \tag{0.36}
\end{align*}
$$

Thus on the inner scale (large times) we have an initial value problem.

Consider the transformation

$$
\begin{equation*}
\mu^{i}=-\frac{2 \beta}{(\gamma+1)} \frac{\psi_{\xi}}{\psi} \tag{0.37}
\end{equation*}
$$

Burgers' equation becomes:

$$
\begin{equation*}
\psi_{\tau}=\frac{1}{2} \beta \psi_{\xi \xi} \tag{0.38}
\end{equation*}
$$

(Heat conduction equation)

$$
\begin{gather*}
\psi(\xi, 0)=\exp \left(-\frac{(\gamma+1)}{2 \beta} \xi\right), \xi<0 \tag{0.39}\\
\psi(\xi, 0)=1, \xi>0 \tag{0.40}
\end{gather*}
$$

Match inner and outer solutions using the asymptotic matching principle (not the limit matching principle).

Composite solution, μ^{c}

$$
\begin{gather*}
\mu^{c}=\mu^{i}+\mu^{o}-\left(\mu^{i}\right)^{o} \tag{0.41}\\
\mu^{c}=\mu^{i} \mu^{o} /\left(\mu_{o}\right)^{i} \tag{0.42}
\end{gather*}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

16.121 Analytical Subsonic Aerodynamics

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

