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Singular Perturbation Methods 
Formation of Shock Waves 

Plane waves (small amplitude) in the absence of dissipation propagate without change in shape: 

∂2 ∂2u u 

∂t 2 = a1
2 

∂x2 (0.1) 

u(x, t ) = F (x − a1t ) +G(x + a1t ) (0.2) 

u = particle velocity 
a1 = local speed of sound 

For finite amplitude plane waves, with dissipation 

c = a1 ± 
γ + 1 

u 
2 

(0.3) 

n 
c = a1 1± 

h³ ρ ´ γ−1
γ + 1 2 

γ − 1 ρ1 

io 
− 1 (0.4) 

c = wave speed 

Regions of higher condensation, ρ 
ρ1 

> 1, overtake those of lower condensation. 

• Produces steeping effect 

• Non-linear convective terms <≡> diffusive terms 

• Wave becomes "stationary" 

Two time scales: 

(A) Viscous diffusive terms balance steep gradients generated by piston initially 

(B) Non-linear convective terms balance viscous diffusive terms 

Model: 

Continuum flow formulation (Navier-Stokes) 
² = piston mach number, ² ¿ 1 

Boundary conditions for large time: matching principle of inner and outer expansions 
Gas is viscous and heat conducting 
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Non-dimensionalization: p∗ µ = ² RT0µ (0.5) 

∗ ∗ ρ = ρ0 (1+ ²ρ) (0.6) 

∗ ∗ p = p0 (1+ ²p) (0.7) 

T ∗ = T0 
∗ (1+ ²T ) (0.8) 

∗ ∗ µ = µ0 (1+ ²µ) (0.9) · ¸ ∗ 
∗ 0 x = q 

µ 
x (0.10) 

ρ ∗ 
0 RT0 

∗ 

· ¸ ∗ µ 
t ∗ = 0 t (0.11) 

ρ ∗ 
0 RT0 

∗ 

( )∗ — dimensional variable 
R — gas constant 

( )0 — undisturbed value 

Navier-Stokes Equations 
ρt + µx + ²(ρµ)x = 0 (0.12) h i 

µt + px − µxx + ² ρµt + µµx − (µµx )x + ²2ρµµx = 0 (0.13) h i h iγ 2 γ +²2 2Tt +(γ−1)µx − Txx +² ρTt +µTx +(γ−1)pµx −(γ−1)µ − (µTx )x ρµTx +(γ−1)µµ = 0 (0.14) x x∇ ∇ 

p = ρ + T + ²ρT (0.15) 

ρ = specific heat ratio 
∇= Prandtl number 

Initial conditions 

µ = ρ = p = T = 0; x > 0, t = 0 

Boundary conditions (at piston) 

µ = 1,Tx = 0; x = ²t , t > 0 

At infinity, damping conditions 

µ,ρ,T → 0, t > 0, x →∞ 

Expansion: 
o o 2 o µ = µ0 + ²µ1 

o + ² µ2 + ... (0.16) 

Linearized solutions, ² → 0 (small times) ("outer region") 

oρo
t + µ = 0 (0.17) x 

o o o µt + p − µ = 0 (0.18) x xx 

oT o + (γ − 1)µ − 
γ 

T o = 0 (0.19) t x xx δ 
op = ρo + T o (0.20) 

Initial and boundary conditions 

o µ = ρo = T o = 0, x > 0, t = 0 
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o µ = 1,T o = 0, x = 0, t > 0x 

o µ ,ρo ,T o → 0; t > 0, x →∞ 

Using Laplace transforms: Z ∞ 

µo(x, s) = e−st µ o(x, t )d t (0.21) 
0 h q i1 p − 1 

µ o(x, t ) ∼ erfc (x − γt )/ 2βt + o(t 2 )
2 

(0.22) 

1 − 1 
ρo(x, t ) ∼ p µ o (x, t )+ o(t 2 )

γ
(0.23) 

(γ − 1) − 1 
T o (x, t ) ∼ p µ o(x, t )+ o(t 2 )

γ 
(0.24) 

γ − 1 
β ≡ 1+ ∇ 

(0.25) 

Transformed (x, t ) qp
X = (x − γt )/ 2β (0.26) ´ 1 ³ X − 1 

µ o (x, t ) ∼ erfc p + o(t 2 )
2 t 

(0.27) 

1 − 1 
ρo(x, t ) ∼ p µ o (x, t )+ o(t 2 )

γ
(0.28) 

γ − 1 − 1 
T o (x, t ) ∼ p µ o (x, t )+ o(t 2 )

γ 
(0.29) 
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SOLUTION AT LARGE TIMES ("INNER REGION") 

Re-scale t : 
τ = ²2t (0.30) ³ ´ ³ ´ p

(Linearized, outer solution breaks down when t = o 1 or t = o 1 )² ²2 

Now require a shock thickness, on the inner scale, to be order unity: 

p q 
ξ = ²(x − γt ) = ² 2βX (0.31) 

Expansion 
i i i µ = µ0 + ²µ1 

i + ²2 µ2 + ... (0.32) 

Substitute into Navier-Stokes equations, and obtain Burgers’ equation: 

1 1i i i i µτ + (γ + 1)µ µ = βµ (0.33) 
2 ξ ξξ2 

Boundary conditions (matching principle): 

(µ i )o = (µ o )i (0.34) 

Initial conditions 
µ i (ξ,0) = 0,ξ > 0 (0.35) 

µ i (ξ,0) = 1,ξ < 0 (0.36) 

Thus on the inner scale (large times) we have an initial value problem. 

Consider the transformation 
2β ψξ 

µ i =− (0.37) 
(γ + 1) ψ 

Burgers’ equation becomes: 
1 

ψτ = βψξξ (0.38) 
2 

(Heat conduction equation) 

(γ + 1)
ψ(ξ,0) = exp(− ξ),ξ < 0 (0.39) 

2β 

ψ(ξ,0) = 1,ξ > 0 (0.40) 

Match inner and outer solutions using the asymptotic matching principle (not the limit matching 
principle). 

cComposite solution, µ 
c µ = µ i + µ o − (µ i )o (0.41) 

c i µ = µ µ o /(µo )
i (0.42) 
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