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Singular Perturbation Method 

What formal analytical methods do we apply to solve "boundary layer" problems? 

What formal analytical methods do we apply to solve differential equations where in the limit of a 
small parameter vanishing, one or more highest-order derivative terms drop out? 

What formal analytical methods do we apply to solve problems where competing physical mech-
anisms vary over time? 

To "answer" the above questions, we introduce the singular perturbation method. In applying the 
singular perturbation method (SPM), one should 1. focus on competing physical mechanisms, 2. 
identify a small parameter, and/or 3. observe that the governing differential equation degenerates in 
the limit of a small parameter vanishing. 

Consider the mass-string-damper system shown in the figure below. 

m = body mass, constant 
d = viscous damping constant 

k = spring constant 
I = applied impulse, at t = 0 

t = time 
x = displacement 

Governing equation and boundary conditions: 

d2x dx 
m + d + kx = 0 

dt 2 dt 

x(0) = 0 ´³ dx I 
u(0) = = 

dt t=0 m 
The completing physical mechanisms are: 
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1. Acceleration/convective forces 

2. Damping forces 

3. Spring constant based forces 

Exact solution: s ´³ ´³ I mk −λ2t − e−λ1tx = e 1 − 4 
d d 2 s ³ ´ d mk 

λ1,2 =− 1± 1 − 4 
2m d 2 

For large I and small m, the competing forces are acceleration forces and damping forces in the ini-
tial stages (small times). 

For large times, after the mass has reached its maximum deviation, the competing forces are damp-
ing and spring constant. 

Solutions valid for small times are called inner solutions. 

Solutions valid for small times are called outer solutions. 

Note for the mass-spring-damper problem: h iI2 −(d/m)tInner solution: x = 1 − e 
d 

I0 −(k/d)tOuter solution: x = e 
d 

We now apply SPM to solve the above problem. First, introduce dimensionless variables: 

k d∗ ∗ t = t x = x 
d I 

Substitute and obtain: ∗d 2x d x∗ ∗ ² + + x = 0 
d t∗2 d t∗ 

∗ ´³ dx 1 

dt ∗ t∗=0 ² 

x ∗ (0) = 0 

mk 
² = << 1 

d 2 

Consider an outer expansion of the form: X∗ 0 0 ²nx = x = xn 

Substitute and equate terms of like powers of ²: 

0dx0 
0
0 = 0+ x 

dt ∗ 

0 d 2 0dx xn 0 n−1+ x =−ndt ∗ d t∗2 

0The solution for x0 is: 
0 −t ∗ 

x0 = A0
0e 
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A0
0 = constant, to be determined 

Consider an inner solution (small times). In order “to see” in inner scale, we will “magnify” the region 
of interest. 

∗ ix = x 

t ∗ ∗ t = , magnification of t 
² 

Substitute and obtain 
d2 i ix dx i+ + ²x = 02 dt ³ dxi ´ 

= 1 

dt 

dt t=0 

x 0(0) = 0 

Consider an inner expansion of the form: X
i i nx = x (t )en 

Substitute and obtain: 
d2 i ix dx0 0+ = 02 dtdt 

i id2x dx in n+ =−x 
dt 

2 n−1, n > 0 
dt 

[Question: why not t = t ∗/²2 or t = t ∗/²3?] 

iWe obtain x0 as 

x0 
i = 1− e−t 

Now let’s determine A0
0. Assume an overlap region exists where the inner and outer solutions are 

valid. The overlap region exists in t ∗, we seek that region in which 

∗ t = δ(²) 

limδ(²) = 0 
²→0 

and ´³ δ(²)
lim =∞ 
²→0 ² 

We select p
δ(²) = ² 

hence h ³ δ(²)´i h i 
lim xi = lim x0 

²(δ(²))0²→0 ² ²→0 

or 
i 0x0(∞) = x0(0) 

The above two equations illustrate the limit matching principle: the outer limit of the inner expan-
sion = the inner limit of the outer expansion. 

Apply the limit matching principle [LMP]: 

i i 0x0(∞) = x = 10 

0 0ix0(0) = x = A0 
0 0 
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i 0 0ix = x0 0 

A0 
0 = 1 

cThe composite solution that is uniformly valid to order ² over the whole region is defined as x0. 

c 0 i 0ix0 ~x0 + x0 − x0³ ´ 
(0.1) 

−t ∗ −t~e + 1− e − 1 (0.2) 

−t ∗ −t −t ∗ −t ∗/² ~e − e = e − e (0.3) 

i 0To continue the analysis to compute x1 and x1, we will need the asymptotic matching principle 
[AMP]: 

The m-term outer expansion of [the n-term inner expansion] = the n-term inner expansion of [the 
m-term outer expansion] 

One may show that a composite solution that is uniformly valid to order ²2 over the whole region is: 

c i 0 −t ∗ −t ∗ 
x ~xi + x0 − x = (1+ 2²)(e − e−t ∗/²)− t ∗ (e−t ∗/² + ²e ) 
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