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Thin Wing Theory 

Objective: 

• Derive the equations of motion governing the subsonic flow around thin wings 

• Use matched asymptotic expansions 

– Physical insight increase 

– Contrast airfoil with slender body of revolution 

Assumptions: 

• Steady flow 

• Inviscid flow 

• Irrotational flow 

• Adiabatic fluid 

• Ideal gas 

• Constant specific heats 

• Wing is in the x,y-plane 

Notation: 
τ = Thickness ratio 
α = Angle of attack 
θ = A measure of the amount of camber 
ḡ (x) = Thickness distribution along the chord 
h̄(x) = Camber distribution along the chord 
ḡ  and h̄ are both smooth 
¯ g 0 and h̄0 are of order of unity everywhere 
τ << 1,θ << 1,α << 1 

zu = ² f̄  
u(x) = τḡ  u(x)+ θh̄ u(x)− αx 

zl = ² f̄  
l (x) =−τḡ  u (x) + θh̄ u(x)− αx 
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² = Small dimensionless quantity measuring maximum cross wise extension of the airfoil 

We will treat two dimensional flow. Extension to three dimensions is straightforward. We week the 
leading terms in a series expansion in ² of Φ. We have shown the governing equations to be: 

2 2(a2 − Φx )Φxx + (a2 − Φz )Φzz − 2Φx Φz Φxz = 0 

γ − 1 ¡ ¢2 2 2 2a = a Φ + Φ −U 2 
∞− 

2 x z ∞ 

2 
·h γ − 1 ¡ ¢iγ/(γ−1) 

¸ 
2 2Cp = 1− Φ + Φz −U∞ 

2 − 1xγM 2 2a2 ∞ ∞ 

The boundary conditions are: 

→−¯A) Q = U∞ i , (x, z) →∞ 

B) Flow is tangent to the airfoil surface 

d f̄  u
Φz /Φx = ² , z = ² f̄  

u
d x 

d f̄  
l

Φz /Φx = ² , z = ² f̄  
ld x 

C) Pressure is continuous at the trailing edge - Kutt-Jovkowsky condition 

Assume in outer expansion: h i 
Φ0 = U∞ Φ

0(x, z)+ ²Φ0
1(x, z) + ... 

Since the airflow in the limit of ² → 0 collapses to a line parallel to the free stream, the zeroth order 
term must represent parallel undisturbed flow. Thus, 

Φ0 
0 = x 
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Substituting, we obtain: 

0 0(1− M∞ 
2 )Φ + Φ = 0ixx izz p 

Φ0 + Φ0 → 0,for x2 + z2 
ix iz 

The remaning boundary conditions belong to the inner region and are to be obtained by matching. 
We assume: 

Φi = U∞ 
£ 
Φi 

0(x, z̄)+ ²Φi 
1(x, z̄) + ²2Φi 

2(x, z̄) + ... 
¤ 

z̄ = z/² 

The stretching enables us to focus on the flow in the immediate neighborhood of the airfoil in the 
limit of ² → 0 since the airfoil shape then remains independent of ² and the width of the inner region 
becomes of order unity. 

The zeroth-order inner term is that of a parallel flow, that is: 

Φi 
0 = x 

(Both inner and outer flow must be parallel in the limit ² → 0.) 

Examining the W-velocity component in the inner region, we may write: 

1 £ ¤ i i i iW = Φ = Φ = U∞ Φ (x, z̄)+ ²Φ (x, z̄)z z̄ 1z̄ 2z̄² 

Since Q must vanish in the limit of zero ², Φi 
1 must be independent of z̄. Hence, let: 

Φ1 
i = ḡ1(x) 

ḡ1(x) may be different above and below the airfoil 

We now write: 

Φi = U∞ 
£ 
x + ²ḡ1(x)+ ²2Φi 

2(x, z̄)+ ... 
¤ 

Substituting the above equation into the governing equation and boundary conditions, we obtain: 

Φi = 02z̄ z̄ 

d f̄  uiΦ2z̄ 
= for z̄ = f̄  u(x)

d x 

d f̄  
l ¯ Φi 

2z̄ 
= for z̄ = fl (x)

d x 

The the solution must be linear in z̄, 

d f̄  uiΦ2 = z̄ + g 2̄u (x) , z̄ ≥ f̄  u
d x 

d ¯ 
i fl

Φ2 = z̄ + g 2̄l (x) , z̄ ≥ f̄  
ld x 
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The inner solution cannot give vanishing disturbances at infinity since the boundary condition be-
longs to the outer region. We need to match the inner and outer solutions. 

We will employ the asymptotic matching principle to complete the required matching. 

From Φi above we note that W i is independent of z̄ to lowest order. Thus, in the outer limit at z̄ =∞, 
we have: 

1 d f̄  u
W i 0 i= Φz̄ (x,∞) = ² 

² d x 
and 

0W 0 = ²Φ1z 

Equating the inner limit (z = 0+), we obtain: 

d f̄  u0Φ (x,0+) = 1z d x 

d ¯ 
0 fl

Φ (x,0−) = 1z d x 
Matching the potential, we find: 

0g 1̄u (x) = Φ1(x,0+) 

To determine ḡ2 it is necessary to include higher order terms in the outer solution. 

First, we write the two-term outer flow in inner variables, ¡ ¢ 
Φ0 = U∞ x + ²Φ0

1(x,²z̄)+ ... 

Taking the three term inner expansion of this: ¡ ¢ 
Φ0 = U∞ x + ²Φ0

1(x,0+)+ ²2 z̄Φ0 (x,0+)+ ...1z 

Rewriting the above equation in outer variables: ¡ ¢0 0 0Φ = U∞ x + ²Φ1(x,0+)+ ²zΦ (x,0+)+ ...1z 

The three-term inner expansion, expressed in outer variables, reads: 

¡ d f̄  
u ¢ 

Φi = U∞ x + ²g 1̄u (x)+ ²z + ²2g 2̄u (x)+ ... 
d x 

Now equate the two-term outer expansion of the three term inner expansion: 

¡ d f̄  
u ¢ 

Φi = U∞ x + ²g 1̄u (x)+ ²z + ... 
d x 

To the three term inner expansion of the two-term outer expansion leads to: 

g 1̄u = Φi 
0(x,0+) 

d f̄  u
Φ0

1z 
(x,0+) = 

d x 
And Cp takes the following form: 

0Cp =−2²Φ1x (x,0±) 
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"+" → upper surface 
"-" → lower surface 
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