Unit 6
 Plane Stress and Plane Strain

Readings:
$T \& G$
$8,9,10,11,12,14,15,16$

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

There are many structural configurations where we do not have to deal with the full 3-D case.

- First let's consider the models
- Let's then see under what conditions we can apply them

A. Plane Stress

This deals with stretching and shearing of thin slabs.
Figure 6.1 Representation of Generic Thin Slab

The body has dimensions such that h $\ll \mathrm{a}, \mathrm{b}$
(Key: where are limits to "<<"??? We'll consider later)

Thus, the plate is thin enough such that there is no variation of displacement (and temperature) with respect to $\mathrm{y}_{3}(\mathrm{z})$.

Furthermore, stresses in the z-direction are zero (small order of magnitude).

Figure 6.2 Representation of Cross-Section of Thin Slab

Thus, we assume:

$$
\begin{aligned}
\sigma_{z z} & =0 \\
\sigma_{y z} & =0 \\
\sigma_{x z} & =0 \\
\frac{\partial}{\partial z} & =0
\end{aligned}
$$

So the equations of elasticity reduce to:

$$
\begin{aligned}
& \text { Equilibrium } \\
& \frac{\partial \sigma_{11}}{\partial y_{1}}+\frac{\partial \sigma_{21}}{\partial y_{2}}+f_{1}=0 \\
& \frac{\partial \sigma_{12}}{\partial y_{1}}+\frac{\partial \sigma_{22}}{\partial y_{2}}+f_{2}=0 \quad \text { (1) } \\
& \text { (3rd equation is an identity) } \quad \begin{array}{l}
0=0 \\
\left(f_{3}=0\right)
\end{array} \\
& \text { In general: } \frac{\partial \sigma_{\beta \alpha}}{\partial y_{\beta}}+f_{\alpha}=0
\end{aligned}
$$

Stress-Strain (fully anisotropic)

Primary (in-plane) strains

$$
\begin{align*}
& \varepsilon_{l}=\frac{1}{E_{l}}\left[\sigma_{l}-v_{12} \sigma_{2}-\eta_{16} \sigma_{6}\right] \tag{3}\\
& \varepsilon_{2}=\frac{1}{E_{2}}\left[-v_{2 l} \sigma_{l}+\sigma_{2}-\eta_{26} \sigma_{6}\right] \tag{4}\\
& \varepsilon_{6}=\frac{1}{G_{6}}\left[-\eta_{61} \sigma_{l}-\eta_{62} \sigma_{2}+\sigma_{6}\right] \tag{5}
\end{align*}
$$

Invert to get:

$$
\sigma_{\alpha \beta}=E_{\alpha \beta \sigma \gamma}^{*} \varepsilon_{\sigma \gamma}
$$

Secondary (out-of-plane) strains

$$
\Rightarrow \text { (they exist, but they are not a primary part of the problem) }
$$

$$
\varepsilon_{3}=\frac{1}{E_{3}}\left[-v_{31} \sigma_{1}-v_{32} \sigma_{2}-\eta_{36} \sigma_{6}\right]
$$

$$
\begin{aligned}
& \varepsilon_{4}=\frac{1}{G_{4}}\left[-\eta_{41} \sigma_{1}-\eta_{42} \sigma_{2}-\eta_{46} \sigma_{6}\right] \\
& \varepsilon_{5}=\frac{1}{G_{5}}\left[-\eta_{51} \sigma_{1}-\eta_{52} \sigma_{2}-\eta_{56} \sigma_{6}\right]
\end{aligned}
$$

Note: can reduce these for orthotropic, isotropic (etc.) as before.

Strain - Displacement

Primary

$$
\begin{align*}
& \varepsilon_{11}=\frac{\partial u_{1}}{\partial y_{1}} \tag{6}\\
& \varepsilon_{22}=\frac{\partial u_{2}}{\partial y_{2}} \tag{7}\\
& \varepsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial y_{2}}+\frac{\partial u_{2}}{\partial y_{1}}\right) \tag{8}
\end{align*}
$$

Secondary

$$
\begin{aligned}
& \varepsilon_{13}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial y_{3}}+\frac{\partial u_{3}}{\partial y_{1}}\right) \\
& \varepsilon_{23}=\frac{1}{2}\left(\frac{\partial u_{2}}{\partial y_{3}}+\frac{\partial u_{3}}{\partial y_{2}}\right) \\
& \varepsilon_{33}=\frac{\partial u_{3}}{\partial y_{3}}
\end{aligned}
$$

Note: that for an orthotropic material $\left(\varepsilon_{23}\right)\left(\varepsilon_{13}\right)$
$\varepsilon_{4}=\varepsilon_{5}=0$ (due to stress-strain relations)

This further implies from above

$$
\left(\text { since } \frac{\partial}{\partial y_{3}}=0\right)
$$

No in-plane variation

$$
\frac{\partial u_{3}}{\partial y_{\alpha}}=0
$$

but this is not exactly true

\Rightarrow INCONSISTENCY

Why? This is an idealized model and thus an approximation. There are, in actuality, triaxial ($\sigma_{z z}$, etc.) stresses that we ignore here as being small relative to the in-plane stresses!
(we will return to try to define "small")
Final note: for an orthotropic material, write the tensorial stress-strain equation as:

$$
\sigma_{\alpha \beta}=E_{\alpha \beta \sigma \gamma}^{*} \quad \begin{gathered}
\text { 2-D plane stress } \\
\varepsilon_{\sigma \gamma} \\
(\alpha, \beta, \sigma, \gamma=1,2)
\end{gathered}
$$

There is not a 1-to-1 correspondence between the 3-D $E_{m n p q}$ and the $2-D E_{\alpha \beta \sigma \gamma}^{*}$. The effect of ε_{33} must be incorporated since ε_{33} does not appear in these equations by using the $\left(\sigma_{33}=0\right)$ equation.

This gives:

$$
\varepsilon_{33}=f\left(\varepsilon_{\alpha \beta}\right)
$$

Also, particularly in composites, another "notation" will be used in the case of plane stress in place of engineering notation:

$$
\begin{aligned}
& \text { subscript } \\
& \underline{\text { change }}
\end{aligned} \begin{cases}x=1=\mathrm{L} & \text { (longitudinal) } \ldots \text { along major axis } \\
y=2=T & \text { (transverse) } \ldots \text { along minor axis }\end{cases}
$$

The other important "extreme" model is...

B. Plane Strain

This deals with long prismatic bodies:

Figure 6.3 Representation of Long Prismatic Body

Dimension in z - direction is much, much larger than in the x and y directions
$L \gg x, y$
(Key again: where are limits to ">>"??? ... we'll consider later)

Since the body is basically "infinite" along z, the important loads are in the $x-y$ plane (none in z) and do not change with z :

$$
\frac{\partial}{\partial y_{3}}=\frac{\partial}{\partial z}=0
$$

This implies there is no gradient in displacement along z , so (excluding rigid body movement):

$$
u_{3}=w=0
$$

Equations of elasticity become:

Equilibrium:

Primary

$$
\begin{align*}
& \frac{\partial \sigma_{11}}{\partial y_{1}}+\frac{\partial \sigma_{21}}{\partial y_{2}}+f_{1}=0 \tag{1}\\
& \frac{\partial \sigma_{12}}{\partial y_{1}}+\frac{\partial \sigma_{22}}{\partial y_{2}}+f_{2}=0 \tag{2}
\end{align*}
$$

Secondary

$$
\frac{\partial \sigma_{13}}{\partial y_{1}}+\frac{\partial \sigma_{23}}{\partial y_{2}}+f_{3}=0
$$

σ_{13} and σ_{23} exist but do not enter into primary consideration

Strain - Displacement

$$
\begin{align*}
& \varepsilon_{11}=\frac{\partial u_{1}}{\partial y_{1}} \tag{3}\\
& \varepsilon_{22}=\frac{\partial u_{2}}{\partial y_{2}} \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\varepsilon_{12}=\frac{1}{2}\left(\frac{\partial \mathrm{u}_{1}}{\partial \mathrm{y}_{2}}+\frac{\partial \mathrm{u}_{2}}{\partial \mathrm{y}_{1}}\right) \tag{5}
\end{equation*}
$$

Assumptions $\left(\frac{\partial}{\partial \mathrm{y}_{3}}=0, \mathrm{w}=0\right)$ give:

$$
\varepsilon_{13}=\varepsilon_{23}=\varepsilon_{33}=0
$$

(Plane strain)

Stress - Strain

(Do a similar procedure as in plane stress)

3 Primary

$$
\begin{align*}
\sigma_{11} & =\ldots \tag{6}\\
\sigma_{22} & =\ldots \tag{7}\\
\sigma_{12} & =\ldots \tag{8}
\end{align*}
$$

Secondary

$$
\left.\begin{array}{l}
\sigma_{13}=0 \\
\sigma_{23}=0 \\
\sigma_{33} \neq 0
\end{array}\right] \text { orthotropic } \quad(\neq 0 \text { for anisotropic })
$$

INCONSISTENCY: No load along z, yet $\sigma_{33}\left(\sigma_{z z}\right)$ is non zero.

Why? Once again, this is an idealization. Triaxial strains (ε_{33}) actually arise.

You eliminate σ_{33} from the equation set by expressing it in terms of $\sigma_{\alpha \beta}$ via (σ_{33}) stress-strain equation.

SUMMARY	Plane Stress	Plane Strain
Geometry:	thickness $\left(y_{3}\right) \ll$ in-plane dimensions $\left(y_{1}, y_{2}\right)$	length $\left(y_{3}\right) \gg$ in-plane dimensions $\left(y_{1}, y_{2}\right)$
Loading:	$\sigma_{33} \ll \sigma_{\alpha \beta}$	$\sigma_{\alpha \beta}$ only $/ \partial y_{3}=0$
Resulting Assumptions:	$\sigma_{i 3}=0$	$\varepsilon_{i 3}=0$
Primary		
Variables:	$\varepsilon_{\alpha \beta,} \sigma_{\alpha \beta}, \mathrm{u}_{\alpha}$	$\varepsilon_{\alpha \beta,} \sigma_{\alpha \beta}, \mathrm{u}_{\alpha}$
Secondary Variable(s):	$\varepsilon_{33} u_{3}$	σ_{33}
Note:	Eliminate ε_{33} from eq. set by using $\sigma_{33}=0 \sigma-\varepsilon$ eq. and expressing ε_{33} in terms of $\varepsilon_{\alpha \beta}$	Eliminate σ_{33} from eq. Set by using $\sigma_{33} \sigma-\varepsilon$ eq. and expressing σ_{33} in terms of $\varepsilon_{\alpha \beta}$

Examples

Plane Stress:
Figure 6. 4 Pressure vessel (fuselage, space habitat) Skin

$$
\begin{aligned}
p_{0} & \approx 70 \mathrm{kPa}(\sim 10 \text { psi for living environment }) \\
& \Rightarrow \sigma_{\mathrm{zz}} \ll \sigma_{\mathrm{xx}}, \sigma_{\mathrm{yy}}, \sigma_{\mathrm{xy}}
\end{aligned}
$$

Plane Strain:
Figure 6.5 Dams

Figure 6.6 Solid Propellant Rockets

but...when do these apply???

Depends on...

- loading
- geometry
- material and its response
- issues of scale
- how "good" do I need the answer
- what are we looking for (deflection, failure, etc.)

We've talked about the first two, let's look a little at each of the last three:
--> Material and its response

- Elastic response and coupling changes importance / magnitude of "primary" / "secondary" factors (Key: are "primary" dominating the response?)
--> Issues of scale
- What am I using the answer for? at what level?
- Example: standing on table
--overall deflection or reactions in legs are not dependent on way I stand (tip toe or flat foot)
\Rightarrow model of top of table as plate in bending is sufficient
--stresses under my foot very sensitive to specifics
(if table top is foam, the way I stand will determine whether or not I crush the foam)
--> How "good" do I need the answer?
- In preliminary design, need "ballpark" estimate; in final design, need "exact" numbers
- Example: as thickness increases when is a plate no longer in plane stress

Figure 6.7 Representation of the "continuum" from plane stress to plane strain

No line(s) of demarkation. Numbers approach idealizations but never get to it.

Must use engineering judgment

AND

Clearly identify key assumptions in model and resulting limitations

