Unit 10
 St. Venant Torsion Theory

Readings:

Rivello
8.1, 8.2, 8.4
$T \& G \quad 101,104,105,106$

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

III. Torsion

We have looked at basic in-plane loading. Let's now consider a second "building block" of types of loading: basic torsion.

There are 3 basic types of behavior depending on the type of cross-section:

1. Solid cross-sections

"classical" solution technique via stress functions
2. Open, thin-walled sections

Membrane Analogy
3. Closed, thin-walled sections

Bredt's Formula

In Unified you developed the basic equations based on some broad assumptions. Let's...

- Be a bit more rigorous
- Explore the limitations for the various approaches
- Better understand how a structure "resists" torsion and the resulting deformation
- Learn how to model general structures by these three basic approaches

Look first at

Classical (St. Venant's) Torsion Theory

Consider a long prismatic rod twisted by end torques:

$$
\mathrm{T}[\mathrm{in}-\mathrm{lbs}] \quad[\mathrm{m}-\mathrm{n}]
$$

Figure 10.1 Representation of general long prismatic rod

Length (1) >> dimensions in x and y directions

Do not consider how end torque is applied (St. Venant's principle)

Assume the following geometrical behavior:
a) Each cross-section (@ each z) rotates as a rigid body (No "distortion" of cross-section shape in x, y)
b) Rate of twist, $\mathrm{k}=$ constant
c) Cross-sections are free to warp in the z-direction but the warping is the same for all cross-sections

This is the "St. Venant Hypothesis"
"warping" = extensional deformation in the direction of the axis about which the torque is applied

Given these assumptions, we see if we can satisfy the equations of elasticity and B.C.'s.

$$
\Rightarrow \text { SEMI-INVERSE METHOD }
$$

Consider the deflections:
Assumptions imply that at any cross-section location z:

Figure 10.2 Representation of deformation of cross-section due to torsion

This results in:

$$
\begin{aligned}
& u(x, y, z)=r \alpha(-\sin \beta) \\
& v(x, y, z)=r \alpha(\cos \beta) \\
& w(x, y, z)=w(x, y)
\end{aligned}
$$

\Rightarrow independent of z !

We can see that:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \sin \beta=\frac{y}{r} \\
& \cos \beta=\frac{x}{r}
\end{aligned}
$$

This gives:

$$
\begin{align*}
& \mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})=-\mathrm{ykz} \tag{10-1}\\
& \mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xkz} \tag{10-2}\\
& \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{w}(\mathrm{x}, \mathrm{y}) \tag{10-3}
\end{align*}
$$

Next look at the Strain-Displacement equations:

$$
\begin{aligned}
& \varepsilon_{\mathrm{xx}}=\frac{\partial u}{\partial x}=0 \\
& \varepsilon_{\mathrm{yy}}=\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0 \\
& \varepsilon_{\mathrm{zz}}=\frac{\partial \mathrm{w}}{\partial \mathrm{z}}=0
\end{aligned}
$$

(consider: u exists, but $\frac{\partial u}{\partial x}=0$
v exists, but $\frac{\partial v}{\partial y}=0$)
\Rightarrow No extensional strains in torsion if cross-sections are free to warp

$$
\begin{align*}
\varepsilon_{\mathrm{xy}}=\frac{\partial \mathrm{u}}{\partial \mathrm{y}} & +\frac{\partial v}{\partial \mathrm{x}}=-\mathrm{zk}+\mathrm{zk}=0 \\
& \Rightarrow \text { cross - section does not change shape (as assumed!) } \\
\varepsilon_{\mathrm{yz}}= & \frac{\partial v}{\partial z}+\frac{\partial \mathrm{w}}{\partial \mathrm{y}}=\mathrm{kx}+\frac{\partial \mathrm{w}}{\partial \mathrm{y}} \tag{10-4}\\
\varepsilon_{\mathrm{zx}}= & \frac{\partial \mathrm{w}}{\partial \mathrm{x}}+\frac{\partial \mathrm{u}}{\partial \mathrm{z}}=-\mathrm{ky}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}} \tag{10-5}
\end{align*}
$$

Now the Stress-Strain equations:
let's first do isotropic

$$
\begin{aligned}
& \varepsilon_{\mathrm{xx}}= \frac{1}{\mathrm{E}}\left[\sigma_{\mathrm{xx}}-\mathrm{v}\left(\sigma_{\mathrm{yy}}+\sigma_{\mathrm{zz}}\right)\right]=0 \\
& \varepsilon_{\mathrm{yy}}= \frac{1}{\mathrm{E}}\left[\sigma_{\mathrm{yy}}-\mathrm{v}\left(\sigma_{\mathrm{xx}}+\sigma_{\mathrm{zz}}\right)\right]=0 \\
& \varepsilon_{\mathrm{zz}}= \frac{1}{\mathrm{E}}\left[\sigma_{\mathrm{zz}}-\mathrm{v}\left(\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}\right)\right]=0 \\
& \quad \Rightarrow \sigma_{\mathrm{xx}}, \sigma_{\mathrm{yy}}, \sigma_{\mathrm{zz}}=0
\end{aligned}
$$

$$
\begin{align*}
\varepsilon_{x y}= & \frac{2(1+v)}{E} \sigma_{x y}=0 \Rightarrow \sigma_{x y}=0 \\
\varepsilon_{y z}= & \underbrace{\varepsilon_{x z}=}_{\underbrace{\frac{2(1+v)}{E}} \sigma_{y z}} \tag{10-6}\\
\frac{\overbrace{\frac{2(1+v)}{E}}^{E} \sigma_{x z}}{} & \Rightarrow \text { only } \sigma_{x z} \text { and } \sigma_{y z} \text { stresses exist }
\end{align*}
$$

Look at orthotropic case:

$$
\begin{aligned}
& \varepsilon_{\mathrm{xx}}=\frac{1}{\mathrm{E}_{11}}\left[\sigma_{\mathrm{xx}}-v_{12} \sigma_{\mathrm{yy}}-v_{13} \sigma_{\mathrm{zz}}\right]=0 \\
& \varepsilon_{\mathrm{yy}}=\frac{1}{\mathrm{E}_{22}}\left[\sigma_{\mathrm{yy}}-v_{21} \sigma_{\mathrm{xx}}-v_{23} \sigma_{\mathrm{zz}}\right]=0 \\
& \varepsilon_{\mathrm{zz}}=\frac{1}{\mathrm{E}_{33}}\left[\sigma_{z z}-v_{31} \sigma_{\mathrm{xx}}-v_{32} \sigma_{\mathrm{yy}}\right]=0 \\
& \quad \Rightarrow \sigma_{\mathrm{xx}}, \sigma_{y y}, \sigma_{z z}=0 \text { still equal zero }
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{y \mathrm{z}}=\frac{1}{\mathrm{G}_{23}} \sigma_{\mathrm{yz}} \\
& \varepsilon_{\mathrm{xz}}=\frac{1}{\mathrm{G}_{13}} \sigma_{\mathrm{xz}}
\end{aligned}
$$

Differences are in $\varepsilon_{\mathrm{yz}}$ and $\varepsilon_{\mathrm{xz}}$ here as there are two different shear moduli (G_{23} and G_{13}) which enter in here.
for anisotropic material:
coefficients of mutual influence and Chentsov coefficients foul everything up (no longer "simple" torsion theory). [can't separate torsion from extension]

Back to general case...
Look at the Equilibrium Equations:

$$
\begin{array}{ll}
\frac{\partial \sigma_{x z}}{\partial z}=0 & \Rightarrow \sigma_{x z}=\sigma_{x z}(x, y) \\
\frac{\partial \sigma_{y z}}{\partial z}=0 & \Rightarrow \sigma_{y z}=\sigma_{y z}(x, y)
\end{array}
$$

So, $\sigma_{x z}$ and $\sigma_{y z}$ are only functions of x and y

$$
\begin{equation*}
\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}=0 \tag{10-8}
\end{equation*}
$$

We satisfy equation (10-8) by introducing a Torsion (Prandtl) Stress Function $\phi(x, y)$ where:

$$
\begin{align*}
& \frac{\partial \phi}{\partial y}=-\sigma_{x z} \tag{10-9a}\\
& \frac{\partial \phi}{\partial x}=\sigma_{y z} \tag{10-9b}
\end{align*}
$$

Using these in equation (10-8) gives:

$$
\frac{\partial}{\partial x}\left(-\frac{\partial \phi}{\partial y}\right)+\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial x}\right) \equiv 0
$$

\Rightarrow Automatically satisfies equilibrium (as a stress function is supposed to do)

Now consider the Boundary Conditions:
(a) Along the contour of the cross-section

Figure 10.3 Representation of stress state along edge of solid crosssection under torsion

Figure 10.4 Close-up view of edge element from Figure 10.3

Using equilibrium:

$$
\begin{aligned}
& \sum F_{z}=0 \quad \text { (out of page is positive) } \\
& \text { gives: } \\
& -\sigma_{x z} \text { dydz }+\sigma_{y z} d x d z=0
\end{aligned}
$$

Using equation (10-9) results in

$$
\begin{aligned}
& -\left(-\frac{\partial \phi}{\partial y} d y\right)+\left(\frac{\partial \phi}{\partial x}\right) d x=0 \\
& \left(\frac{\partial \phi}{\partial y} d y\right)+\left(\frac{\partial \phi}{\partial x} d x\right)=d \phi
\end{aligned}
$$

And this means:

$$
\begin{aligned}
& \mathrm{d} \phi=0 \\
& \Rightarrow \phi=\mathrm{constant}
\end{aligned}
$$

We take:

$$
\phi=0 \text { along contour } \quad(10-10)
$$

Δ Note: addition of an arbitrary constant does not affect the stresses, so choose a convenient one (0!)

Boundary condition (b) on edge $z=1$
Figure 10.5 Representation of stress state at top cross-section of rod under torsion

Equilibrium tells us the force in each direction:
$F_{\mathrm{x}}=\iint \sigma_{\mathrm{zx}} \mathrm{dxdy}$
using equation (10-9):
$=\iint_{y_{L}}^{y_{R}} \frac{\partial \phi}{\partial y} d x d y$
where y_{R} and y_{L} are the geometrical limits of the crosssection in the y direction

$$
\begin{aligned}
& =-\int[\phi]_{y_{L}}^{y_{f}} \mathrm{dx} \\
& \quad \text { and since } \phi=0 \text { on contour }
\end{aligned}
$$

$$
F_{x}=0
$$

O.K. (since no force is applied in x-direction)

Similarly:

$$
F_{y}=\iint \sigma_{z y} d x d y=0 \text { o.K. }
$$

Look at one more case via equilibrium:

$$
\begin{aligned}
\text { Torque }=\mathrm{T} & =\iint\left[x \sigma_{z y}-y \sigma_{z x}\right] d x d y \\
& =\iint_{x_{T}}^{x_{B}} x \frac{\partial \phi}{\partial x} d x d y+\iint_{y_{L}}^{y_{R}} y \frac{\partial \phi}{\partial y} d y d x
\end{aligned}
$$

where x_{T} and x_{B} are geometrical limits of the cross-section in the x-direction
Integrate each term by parts:
$\int A d B=A B-\int B d A$

Set:

$$
\begin{aligned}
& A=x \Rightarrow d A=d x \\
& d B=\frac{\partial \phi}{\partial x} d x \Rightarrow B=\phi \\
& \text { and similarly for } \mathrm{y}
\end{aligned}
$$

$$
\begin{aligned}
& =0 \quad=0 \\
& \text { since } \phi=0 \text { in contour since } \phi=0 \text { in contour }
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \mathrm{T}=-2 \iint \phi \mathrm{dxdy} \tag{10-11}
\end{equation*}
$$

Up to this point, all the equations [with the slight difference in stress-strain of equations (10-6) and (10-7)] are also valid for orthotropic materials.

Summarizing

- Long, prismatic bar under torsion
- Rate of twist, $\mathrm{k}=\mathrm{constant}$
- $\varepsilon_{y z}=k x+\frac{\partial w}{\partial y}$
- $\varepsilon_{\mathrm{xz}}=-k y+\frac{\partial w}{\partial \mathrm{x}}$
- $\frac{\partial \phi}{\partial y}=-\sigma_{x z} \quad \frac{\partial \phi}{\partial x}=\sigma_{y z}$
- Boundary conditions

$$
\begin{aligned}
& \phi=0 \text { on contour (free boundary) } \\
& \mathrm{T}=-2 \iint \phi \mathrm{dxdy}
\end{aligned}
$$

Solution of Equations

(now let's go back to isotropic)
Place equations (10-4) and (10-5) into equations (10-6) and (10-7) to get:

$$
\begin{align*}
& \sigma_{y z}=G \varepsilon_{y z}=G\left(k x+\frac{\partial w}{\partial y}\right) \tag{10-12}\\
& \sigma_{x z}=G \varepsilon_{x z}=G\left(-k y+\frac{\partial w}{\partial x}\right) \tag{10-13}
\end{align*}
$$

We want to eliminate w. We do this via:

$$
\frac{\partial}{\partial x}\{\text { Eq. }(10-12)\}-\frac{\partial}{\partial y}\{\text { Eq. }(10-13)\}
$$

to get:

$$
\frac{\partial \sigma_{y z}}{\partial x}-\frac{\partial \sigma_{x z}}{\partial y}=G\left(k+\frac{\partial^{2} w}{\partial x \partial y}+k-\frac{\partial^{2} w}{\partial y \partial x}\right)
$$

and using the definition of the stress function of equation (10-9) we get:

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=2 G k \tag{10-14}
\end{equation*}
$$

Poisson's Equation for ϕ
(Nonhomogeneous Laplace Equation)

Note for orthotropic material

We do not have a common shear modulus, so we would get:

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\left(G_{x z}+G_{y z}\right) k+\left(G_{y z}-G_{x z}\right) \frac{\partial^{2} w}{\partial x \partial y} \\
& \Rightarrow \text { We cannot eliminate w unless } G_{x z} \text { and } G_{y z} \text { are virtually the } \\
& \text { same }
\end{aligned}
$$

Overall solution procedure:

- Solve Poisson equation (10-14) subject to the boundary condition of $\phi=0$ on the contour
- Get T-k relation from equation (10-11)
- Get stresses ($\sigma_{x z}, \sigma_{y z}$) from equation (10-9)
- Get w from equations (10-12) and (10-13)
- Get u, v from equations (10-1) and (10-2)
- Can also get $\varepsilon_{x z}, \varepsilon_{y z}$ from equations (10-6) and (10-7)

This is "St. Venant Theory of Torsion"
Application to a Circular Rod
Figure 10.6 Representation of circular rod under torsion cross-section

"Let":

$$
\phi=C_{1}\left(x^{2}+y^{2}-R^{2}\right)
$$

This satisfies $\phi=0$ on contour since $x^{2}+y^{2}=R^{2}$ on contour
This gives:

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=2 \mathrm{C}_{1} \quad \frac{\partial^{2} \phi}{\partial y^{2}}=2 \mathrm{C}_{1}
$$

Place these into equation (10-14):

$$
2 \mathrm{C}_{1}+2 \mathrm{C}_{1}=2 \mathrm{Gk}
$$

$$
\Rightarrow C_{1}=\frac{G k}{2}
$$

Note: (10-14) is satisfied exactly

Thus:

$$
\phi=\frac{G k}{2}\left(x^{2}+y^{2}-R^{2}\right)
$$

Satisfies boundary conditions and partial differential equation exactly
Now place this into equation (10-11):

$$
T=-2 \iint \phi d x d y
$$

Figure 10.7 Representation of integration strip for circular cross-section

$$
T=G k \int_{-R}^{R} \int_{-\sqrt{R^{2}}-y^{2}}^{+\sqrt{R^{2}-y^{2}}}\left(R^{2}-y^{2}-x^{2}\right) d x d y
$$

$$
\begin{aligned}
T & =G k \int_{-R}^{R}\left[\left(R^{2}-y^{2}\right) x-\frac{x^{3}}{3}\right]_{-\sqrt{R^{2}-y^{2}}}^{+\sqrt{R^{2}-y^{2}}} d y \\
& =G k \frac{4}{3} \int_{-R}^{R}\left(R^{2}-y^{2}\right)^{3 / 2} d y \\
& =G k \frac{4}{3} \frac{1}{4}[\underbrace{y\left(R^{2}-y^{2}\right)^{3 / 2}}_{=0}+\frac{3}{\frac{3}{2} \underbrace{2} y \sqrt{R^{2}-y^{2}}}+\underbrace{\frac{3}{2} R^{4} \sin ^{-1} \frac{y}{R}}_{=0}]_{-R}^{+R}
\end{aligned}
$$

This finally results in

$$
\mathrm{T}=\mathrm{Gk} \frac{\pi \mathrm{R}^{4}}{2}
$$

Since k is the rate of twist: $\mathrm{k}=\frac{\mathrm{d} \alpha}{\mathrm{dz}}$, we can rewrite this as:

$$
\frac{\mathrm{d} \alpha}{\mathrm{dz}}=\frac{\mathrm{T}}{\mathrm{G} J}
$$

where:

$$
\begin{aligned}
& J=\text { torsion constant }\left(=\frac{\pi R^{4}}{2} \text { for a circle }\right) \\
& \alpha=\text { amount of twist }
\end{aligned}
$$

and:

GJ = torsional rigidity

Note similarity to:

$$
\frac{d^{2} w}{d x^{2}}=\frac{M}{E l}
$$

where: $\mathrm{El}=$ bending rigidity
(I) J - geometric part
(E) G - material part

To get the stresses, use equation (10-9):

$$
\begin{aligned}
& \sigma_{y z}=\frac{\partial \phi}{\partial x}=G k x=\frac{T}{J} x \\
& \sigma_{x z}=-\frac{\partial \phi}{\partial y}=-G k y=-\frac{T}{J} y
\end{aligned}
$$

Figure 10.8 Representation of resultant shear stress, $\tau_{\text {res }}$, as defined

Define a resultant stress:

$$
\begin{aligned}
\tau & =\sqrt{\sigma_{z x}^{2}+\sigma_{z y}^{2}} \\
& =\frac{T}{J} \underbrace{\sqrt{x^{2}+y^{2}}}_{=r}
\end{aligned}
$$

The final result is:

$$
\tau=\frac{\mathrm{Tr}}{\mathrm{~J}}
$$

for a circle
Note: similarity to $\left(\sigma_{x}=-\frac{M z}{I}\right)$
τ always acts along the contour (shape)
resultant
Figure 10.9 Representation of shear resultant stress for circular cross-section

Also note:

1. Contours of ϕ : close together near edge \Rightarrow higher τ

Figure 10.10 Representation of contours of torsional shear function

2. Stress pattern (τ) creates twisting

Figure 10.11 Representation of shear stresses acting perpendicular to radial lines

To get the deflections, first find α :

$$
\frac{\mathrm{d} \alpha}{\mathrm{dz}}=\frac{\mathrm{T}}{\mathrm{GJ}}
$$

(pure rotation of cross-section)
integration yields:

$$
\begin{aligned}
\alpha=\frac{\mathrm{Tz}}{\mathrm{GJ}}+ & \mathrm{C}_{1} \\
& \text { Let } \mathrm{C}_{1}=0 \text { by saying } \alpha=0 @ z=0
\end{aligned}
$$

Use equations (10-1) and (10-2) to get:

$$
\begin{aligned}
& u=-y z k=-y \frac{T z}{G J} \\
& v=x z k=x \frac{T z}{G J}
\end{aligned}
$$

Go to equations (10-12) and (10-13) to find $w(x, y)$:
Equation (10-12) gives:

$$
\frac{\partial w}{\partial y}=\frac{\sigma_{y z}}{G}-k x
$$

using the result for $\sigma_{y z}$:

$$
\begin{aligned}
& \frac{\partial w}{\partial y}=\frac{G k x}{G}-k x=0 \\
& \quad \text { integration of this says } \\
& w(x, y)=g_{1}(x) \quad \text { (not a function of } y \text {) }
\end{aligned}
$$

In a similar manner...
Equation (10-13) gives:
$\frac{\partial w}{\partial x}=\frac{\sigma_{x z}}{G}+k y$
Using $\sigma_{x z}=$-Gky gives:

$$
\frac{\partial w}{\partial x}=-\frac{G k y}{G}+k y=0
$$

integration tells us that:
$\mathrm{w}(\mathrm{x}, \mathrm{y})=\mathrm{g}_{2}(\mathrm{y}) \quad$ (not a function of x)
Using these two results we see that if $w(x, y)$ is neither a function of x nor y, then it must be a constant. Might as well take this as zero
(other constants just show a rigid displacement in z which is trivial)
$\Rightarrow \mathrm{w}(\mathrm{x}, \mathrm{y})=0 \quad$ No warping for circular cross-sections
(this is the only cross-section that has no warping)

Other Cross-Sections

In other cross-sections, warping is "the ability of the cross-section to resist torsion by differential bending".
2 parts for torsional rigidity

- Rotation
- Warping

Ellipse

$$
\phi=C_{1}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)
$$

Equilateral Triangle

$$
\phi=C_{1}\left(x-\sqrt{3} y+\frac{2}{3} a\right)\left(x+\sqrt{3} y-\frac{2}{3} a\right)\left(x+\frac{1}{3} a\right)
$$

Rectangle

$$
\begin{aligned}
& \phi=\sum_{n \text { odd }}\left(C_{n}+D_{n} \cosh \frac{n \pi y}{b}\right) \cos \frac{n \pi x}{a} \\
& \text { Series: (the more terms you take, the better the } \\
& \text { solution) }
\end{aligned}
$$

These all give solutions to $\nabla^{2} \phi=2$ GK subject to $\phi=0$ on the boundary. In general, there will be warping
see Timoshenko for other relations (Ch. 11)
Note: there are also solutions via "warping functions". This is a displacement formulation
see Rivello 8.4

Next we'll look at an analogy used to "solve" the general torsion problem

