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FIGURE 6.5-14
Exercise 6.5-3.

6.6 ROBUST STABILITY

In the previous section one notion of relative stability was discusse'd. 11.1 the view of
that section, one system is considered less stable than another if its time response
is more oscillatory and less highly damped. The relative stability detcreases.as the
Nyquist plot of the loop gain transfer function approaches the —1 point. Besides an
oscillatory time response, a system whose Nyquist plot passes close tg the —1 point
suffers from another problem. If such a system is even slightly mlsmo'deled, the
Nyquist plot can be easily perturbed in such a way that thf: number of enc1rclerpents
of the —1 point changes without changing the number of right half-plane poles m'the
loop gain transfer function. The Nyquist theorem indicates that the nqmber of rl.ght
half-plane poles in the perturbed closed-loop system changes, s0 that, if the nominal
closed-loop system is stable, the perturbed closed-loop system is unstable.

It is important that a control system that is designed to be stable and perform
well when used in conjunction with a nominal plant model still works. well when used
in conjunction with an actual physical plant. The output of the physical plant can be
expected to behave in a manner similar to but not exactly the same as the anln?tl
model. A controller design that works well with a large set of plant mod(?ls is said
to be robust. It is apparent from the preceding discussion that a design w1t}.1 a loqp
gain Nyquist plot that passes close to the —1 point is not robust. In th.lS section, this
notion of robustness is formalized using the models of plant uncertainty developed
in Sec. 5.7. First, conditions assuring that a design remains szable in the facevof
plant perturbations is developed. Clearly, maintaining stability for exp'ecte'd modeling
errors is an absolute requirement. In addition, it is desirable to maintain adequate
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performance in the face of modeling errors. After the question of stability robustness
is resolved in this section the question of robust performance is addressed in Sec. 6.5.

In Sec. 5.7, we developed techniques for describing a set of possible plant
models using a nominal plant model and a perturbation transfer function with a known

magnitude bound. Consider first the description using an additive perturbation as
described in Sec. 5.7

Gp(s) = G,p(s) + Ly(s) (6.6-1a)

where L,(s) is itself a stable transfer function containing no right half-plane poles. A
bound /,( jw) on the magnitude of L,(jw) is known, i.e.,

|La(jw)| < I,(jw) (6.6-1b)

but otherwise L,(s) is a completely unknown transfer function. We are interested in
the stability of the G configuration system of Fig. 6.6-1.

Let G(5) = Gc(5)G,(s) be the nominal loop gain, and G (s) = G (s)G,(s) be
the perturbed loop gain.

Assume that the nominal design is stable, that is, that the closed-loop system is
stable when L, (s) = 0. The robust stability question is formulated as follows: What
conditions must be placed on G(s) so that the configuration of Fig. 6.6-1 remains
stable for all Gp(s) satisfying Eq. (6.6-1)?

The robust stability question can be answered using the same tool that was used
to answer the nominal stability and relative stability questions—the Nyquist diagram.
Consider Fig. 6.6-2, which contains a typical Nyquist plot of G(s) and G(s). From
the definitions above we can see that

G(s) = Ge(s) (Gp(9) + L, (5)) = G(5) + Ge(s) La(s) (6.6-2)

The plot of G( Jw) can be obtained from the plot of G(jw) at each value of w by
adding a vector corresponding to G¢(jw)L,(jw) to G( Jw). Indeed, if each possible
L.(jw) satisfying Eq. (6.6-1b) is used in turn, the set of all possible G (jw,) at
the frequency w, is given by the interior of a circle centered at G(jw,) with radius
G (jwe)l,(jw,). This circle is shown on Fig. 6.6-2 assuming that the L,(jw) chosen
for display has the maximum magnitude. The key observation for the desired result is
that each L,(s) is assumed to be stable itself, so that the number of right half-plane
poles of the loop gain G(s) is unchanged from the number of right half-plane poles
of the nominal loop gain G(s). Therefore, the closed-loop stability assumed for the
configuration in Fig. 6.6-1 with L, (s) = 0 is maintained for nonzero L,(s) if and only
if the number of encirclements of the —1 point is unchanged in going from G( jo) to

R(s) Y(s) R(s)

<=> + G Y &)

Gels) Gy(s)

FIGURE 6.6-1
The perturbed G configuration.
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FIGURE 6.6-2 .
Nyquist plots of G(s) and G(s).

G( Jjw). One way to assure that the number of encirclements remains unghgnged is to
assure that, at every single frequency, /,(jw) is small enough so that G( jw) cannot

reach the —1 point. ' o
At each w, the distance between G(jw) and the —1 point is given by

IG(jw) = (=D] = |1 + G(jw)|
Therefore, if at every @ we have the condition

IGe(jo) la(jo) < |1 + G(jo)

or
11+ G(jo)|
IGe(jw)l

then the perturbed system G (jw) is stable since the perturbation in the Nyquist plot
mber of encirclements.
0311110;:::;11 glgqfh(e6?6u-3) we see that, as expected, a measure of the rob}lstness fof
a control system is given by the distance the Nyquist plot of the loop gain trapts ;:r
function maintains from the —1 point. This distance can be expressed as the magr;ll u 13
of the return difference transfer function, a quantity that we alreac?y have seen s olu
be kept large for such performance requirements as reference input tracking, low
itivity, and disturbance rejection. o
paramg:;astfgjlzﬁ@y?)) provides the condition to guarantee maimer'lax‘xce of s‘tabxhty in
the face of stable additive perturbations satisfying Eq. (6.6.-1).. It is interesting to1 see
what can be said if Eq. (6.6-3) is violated. If Eq. (6.6-3‘) 1s. violated the c'losed- oop
system remains stable for many of the possible L,(s) satisfying Eq. (6.6-1); however,

la(jow) < = |Gz (jo) + G, (jo)| (6.6-3)
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there is no longer any guarantee that stability is maintained for every perturbation

satisfying Eq. (6.6-1). Indeed, if la(jw) is continuous in w and if, for some w, and
€ >0,

N+G (Jw,)|
IGc (jew,)

then there exists a perturbation Lq(jo) satisfying Eq. (6.6-1) that causes instability.
The destabilizing perturbation is constructed by choosing L, (s) stable so that

la (jwo) > (6.6-4)

11+ G (jw,)|
1Gc (jwo)]

and arg (Lo (jwo)) = arg (1 + G (jw,)) — arg G¢ (jw,) + 180°.

The ensuing Nyquist plot of G( Jo) has a different number of encirclements of
the —1 point than the Nyquist plot of G( jw) and the closed-loop stability is lost.

As discussed in Sec. 5.7 it is often easier to express a class of possible plant
models using a multiplicative perturbation rather than an additive perturbation. This is
particularly true for stability robustness conditions since the condition of Eq. (6.6-3)
has the compensator appearing separately from the loop gain. The robust stability
condition for a multiplicative perturbation is a function of only the loop gain. Assume
a set of possible plant models is

ILq (Jwo)| = +€/2

Gp(5) = Gp(s) (1 + Ly (s)) (6.6-5)

where L,,(s) is itself a stable transfer function containing no right half-plane poles.
A bound /,,(jw) on the magnitude of L,,(jw) is known, i.e.,

|Lm (Jo)| < I ( jw) (6.6-6)

Then Egs. (6.6-5) and (6.6-6) are equivalent to Egs. (6.6-1a) and (6.6-1b) with the
identification

La(s) = Gp(s)Lp(s) (6.6-7)

However, the equivalent expression for the loop gain is

G($) = Gc(9)Gp(S) (1 + Lu(s)) = G(s) (1 + Ln(5)) = G(s) + G(s)Lm(s)

(6.6-8)
The Nyquist plot is perturbed from G(s) to G(s) by the addition of G ()L (s).
The condition for robustness in the multiplicative perturbation setting is obtained
by observing again that if, at each frequency, the distance that the Nyquist plot of
G(jw) can be perturbed is less than the distance to the —1 point, a nominally stable
closed-loop system is guaranteed to remain stable, Thus, if the closed loop system of
Fig. 6.6-1 is stable for L, (s) =0, if each L, (s) is stable, and if for all o

ln(jo)G (jw) < |1+ G(jw)] (6.6-9)
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then the closed-loop system of Fig. 6.6-1 remains stable. Equation (6.6-9) can be
manipulated into the equivalent forms

) 11+ G(jw))

Ly —_—— 6.6-10
U9 < GG (€619
G(jw) 1

6-

!1+G<jw) <G (6.6-11)
1 Gl

lm(Jw)l_—_—_1+G(jw) <1 (6.6-12)

As with the robustness condition for the additive perturbation formulation, something
can be said if Eq. (6.6-11) is violated. If Eq. (6.6-11) is violated, then there is a
multiplicative perturbation satisfying Eq. (6.6-6) that causes the perturbed closed-loop
system of Fig. 6.6-1 to be unstable.

The robustness condition of Eq. (6.6-11) usually poses a constraint on the allow-
able bandwidth of a control system as can be seen by the following argument. Recall
from Sec. 5.7 that usually a multiplicative perturbation is small at low frequencies and
grows to be larger than unity at higher frequencies. Let w; be the frequency where
lu( joo1) = 2. Assume that for @ > wy, I;;'(jw) < 3. Now notice that the left hand
side of Eq. (6.6-11) is simply the nominal closed-loop transfer function. It is usually
desirable to keep the closed-loop transfer function close to unity for as large a range
of frequencies as possible. However, the constraint of Eq. (6.6-11) dictates that the
magnitude of the nominal closed-loop transfer function be less than % and the nominal
loop gain be less than 1 and for all @ > w;. Thus the maximum bandwidth of the
system is limited to less than w; if the controller is to result in a stable closed-loop
system for all possible models as given by Eqgs. (6.6-5) and (6.6-6).

Example 6.6-1. Let a collection of possible plant models be given by Eqs. (6.6-5) and

(6.6-6) with
1
Gp(s) = 7 (6.6-13)
1
Im(s) = 1—6](s + D (6.6-14)
A series compensator given by
Gc(s) = a, a constant (6.6-15)
makes
G(s) = % (6.6-16)

By straight calculation, the closed-loop transfer function is

G(s) a

1+G(s) s+a (6.6-17)
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which includes a single closed-loop pole at s =
w=0t0w=aq,

Figure 6.§-3 plots are derived from Eq. (6.6-14) and the closed-
response for varxous. values of a. From the figure and a few calculations
the rot?usmftss condition of Eq. (6.6-1 1) is satisfied for all @ < 10. Thus
bandw;ith 1s roughly equal to the frequency where 2wy =1

ow, let’s take @ = 11 so that the robustness condition i Vi
‘ >t tak ‘ 1tion is violated. We show that
there 1s a multiplicative perturbation satisfying the magnitude bound given by Eq. (6 6-15)
which produces an unstable closed-loop system. A
To construct a destabilizing perturbation fi
. 18t choose a frequency w, where th
robustness constraint of Eq. (6.6-11) is violated. In this example, we can chooze Wy = 108
] o —

—a. The closed-loop bandwidth covers

loop frequency
we can see that
, the maximum

since
G(j100) | , 11 I 11 1 10
; =i = > —
L+ GUI00) | /1004 11| ~ Jio121 = In(7100) — V10001

The.concept. 1s 1o select [, ( jw,) so that the equivalent additive perturbation given b
Im(jws)G(jws) moves the Nyquist plot of G(jw) to and past the —1 oint at thy
frequenc.y wo. Thus we select the magnitude of L, (jw,) to be s]ightlyplar er th :
I14+G(j100)|/1G( Jj100)| while remaining smaller than J,,, ( Jwo) and we select t}gle phazz

of the L, ( jw,) to point the vector L, ( 7 i
. m(Jjwo)Gm( jow,) in the Nyquist pl 1
towards —1. This can be achieved using the relatiorl;ship austplane from Gl wo)

418 (L (jo)) = arg (1 + G (jw,)) — 180° — arg (G ( juy))

dB
~40
L ()
20
0.01 0.1 10 100
! T w
-2Q
a=100
—40 a=10
a=1
a=0.1

FIGURE 6.6-3
Bode magnitude plots of Eq. (6.6-14) and Eq. (6.6-17) for various 4.
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Performing these calculations the phase of the destabilizing L, ( jw,) for this example is
—96° while 9.5 is a destabilizing magnitude. Once we know what L, ( jw,) should equal
we only need to fit a transfer function that also satisfies the upper bound of Eq. (6.6-6)
to that point. For example, one destabilizing. L, (s) is given by

0.95(s + 1) (—0.0103s + 1)?
(0.001s + 10) (0.0103s + 1)?

Ly (s) =

First note that L,,(s) is stable and that
0.95| jow + 1}
10

Then we can draw the Nyquist plot for the loop gain G(s)(1 + L, (s)) as in Fig. 6.6-4
and see that the resulting closed-loop system is unstable.

[Lm(s)] < < ln(Jjw)

We have seen in this section that the stability of the nominal system can be

guaranteed for a system with a stable multiplicative perturbation if Eq. (6.6-12) is sat-
isfied. Such a system is said to possess robust stability with respect to the perturbation
in question. Multiplicative perturbations tend to get large at high frequencies. Equa-
tion (6.6-12) requires that the nominal loop gain is made small at high frequencies.

Exercises 6.6

6.6-1. A plant is modeled by

3
Gl =

but in reality the plant contains unmodeled dynamics. Its perturbed transfer function is
15(s +5)
(s +1) (s +3s +25)

Gp(s) =

FIGURE 6.6-4
Real Perturbed loop gain for Example 6.6-1.
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Gc(s ) G p(S)

FIGURE 6.6-5

6.6-2,

Exercise 6.6-1.

(@) Flpd the additive perturbation L, {s) and the multiplicative perturbation L, (s) for
this case. Sketch the Bode magnitude plots of L,( jw) and Ly, ( jw). Consider the
closed-loop system of Figure 6.6-5. Let Ge(s) = K, a constant.

b) For K =1, check to see if the design that is clearly stable for the nominal model
is stable for the actual plant by sketching the Bode magnitude plot of

1+ Ge(jo)G, jw)|

[Gc (jw)l
on the same plot as L, (jw). Also, sketch the Bode magnitude plot of
Ge(jw)Gp( jow)
1+ Ge(j)Gp( jw)

on the same plot as lL,;l(jw)l.
(c) Repeat (b) for K = 8.
Answers:

6

@ La(s) = 5z5(1 — 0.5s) Ln(s) = _%_ s(1 —0.55)

o+ 1) (14985 + ()

(0) Robustly stable
(c) Not robustly stable

Remember, the magnitude tests in (b) and (c) are sufficient for stability, but not
necessary. .If a system passes the magnitude test, then the perturbed system is stable.
However, if the §ystem fails the magnitude test the perturbed system may be stable
or u.n.stable. (Option: To see this analyze (b) and (c) with K = 2. Check the robust
stability test and check stability directly.)
The magnitude of the possible multiplicative perturbations that are likely to occur

between a plant Gp(s) and a model G (s) can be bound
; ed by |L
Im(s) is shown in Fig. 6.6-6. g YO < ln ), where

25 ((%)2+9§’s+1)

4

1 10 100
w (rad/sec)

FIGURE 6.6-6
Exercise 6.6-2.
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The model is given by G,(s) = s-+1 If a proportional controller G.(s) = K
is used the nominal closed-loop system is stable for all K > —1. For what values of
K > 0 can stability be guaranteed in the presence of all multiplicative perturbations
obeying the above bound? Explain your answer briefly.

Answer: K <1

6.7 PERFORMANCE AND ROBUSTNESS

In Sec. 6.6, we developed the constraint of Eq. (6.6-11), which characterizes a collec-
tion of loop gain transfer functions for which a perturbed closed-loop system remains
stable. If such a constraint is satisfied and the actual plant’s behavior is adequately
described by one of the models in the collection of models given by Eqgs. (6.6-5)
and (6.6-6), the implementation of the control system produces a stable closed-loop
response. However, even though that response is stable it may produce unacceptable
oscillatory responses. We need some way to assure that the performance aspects re-
quired for the system and met by the nominal design are also met when the controller
is implemented on the actual plant. We cannot assure 100 percent performance on the
actual plant since even the collection of plants described by Eq. (6.6-5) and (6.6-6)
cannot perfectly model the actual plant. We can arrive at a constraint that will assure
that some performance measure is achieved for any plant that is a member of the
collection of plants described by Eqgs. (6.6-5) and (6.6-6).

We must first decide on a performance measure that suitably describes such
diverse control system performance requirements as possessing desirable transient
responses to command inputs, quickly and completely rejecting certain disturbances,
and providing a small sensitivity in response to small parameter changes. One way to
abstract these goals into a single performance specification is to recall that, in Sec. 3.2,
we came to the realization that all these performance objectives can be met if we can
make the return difference transfer function large enough. While the return difference
cannot capture every aspect of performance that might be specified, a controller with
a large return difference over a broad frequency band can be expected to perform well
in most common tests of control system performance. With that in mind we can write
down an interesting general performance requirement for a control system.

We can say that a control system in the G configuration performs adequately if

11+ G(jw)| > p(jw) (6.7-1)

where p(jw) is some specified function of frequency. We now show an example which
demonstrates how p( jw) may be derived from typical performance requirements.

Example 6.7-1. One performance aspect of interest in a control system is how well
disturbances are rejected. A typical specification would be that a control system must
reject all constant output disturbances completely as time goes to infinity, and, in addition,
it must attenuate the effect of all output disturbances of frequency less than 1 rad/sec so
that the output is disturbed by less than 1 percent of the magnitude of the disturbance.
The effect of an output disturbance on the plant output is taken from Table 3.2-2.

|
N B 6.7-2
©=1Te6"" o
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r\»;})::f ;?SemcLass of pe;turbed plants G (s) is used to indicate the desire that the system
roances when used with any of the possible pl i
ject . plant models. The disturb
rejection requirement above can be translated to the form of Eq. (6.7-1) by rezlsulilrrinznce

P jw) > 100 for o < 1 (6.7-3)
and

al)l_r;nop(ja)) =00 (6.7-4)
If Eqgs. (6.7-1) and (6.7-3) are satisfied, then

Yl <

1
I,D(ja))llDl =<0.01/D| forw<1

A o
second common specification involves the closed-loop transfer function’s sensi-

1

SM = —
¢ =13 o (6.7-5)
The sensitivity requirement is met if
p{jw) > 100 for w < 10 (6.7-6)

Speci i i
;(). C:)ﬁcl:atlogs on the transient response of the system translate into specifications on
Pljw) less directly than do specifications on disturbance rejection and sensitivity reduc-

;iletrrz(ril S(j(;in(iin.arltt clodsed-loop pole positions. Then, the desired closed-loop pole positions
€d 1nto a desired closed-loop frequency res i
. ponse. Finally, the closed-loop fre-
quency response is translated int i i i o on
ivalent i 0 a specification on the return difference function or,
b Sulpl)pose that there is a requirement to produce a closed-loop step response which
E s e(is ; ;1;1 20 percent over.sh’oot and a 5 percent settling time of less than 5.5 sec. From
lo%s. ( . -f ) and (4.4-14), 1t is seen that these specifications are satisfied by a closed-
Witﬁ draarﬁs fer fun.ctxzn v&;)hose dominant behavior is characterized by a single pole pair
ping ratio ¢ = 0.47 and natural frequency w, = 1.2. F it i
that the closed-loop frequenc fer Tunotion e oo
Yy response for such a transfer function h i
close to unity for all frequencies less th aher oquense
an 1.2 rad/sec and rolls off at hi i
: gher frequencies.
From ]IEq. t515.32) the fg)eak of the magnitude plot is computed to be less than 1q2 “
3 i the G configuration the magnitude of the closed-1 re
In ! -loop frequency res
IMc(jw)| 1s. related to the~magmtude of the loop gain |G( Jw)| and tge mg nitulc)lzns;
the return difference |1 + G(jw)| by the expression : °

|G (jw)|

|#tey| = 21
1+ G(jw)|

(6.7-7)

'I;Z |1 + G(. Jw)| is much greater than one, then |G( Jw)| is much greater than one and
c(Jjw)]| is very close to one. This logic can be quantified using the inequalities

[1+G(w)| -1 < |GGw)| < 1+ 6 (jw)] +1 (6.7-8)
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Dividing Inequalities (6.7-8) by |1 + f;( Jjw)| and using Eq. (6.7-7) we can arrive fit zn
expression relating the magnitude of the closed-loop frequency response to the magnitude
of the return difference.

1 - . 1 }
- — < M (jo)| < 1 4 ————— (6.7-9)
: 1+ G(jo)] [#e( o) 1+ Gjo)|

If the magnitude of the return difference is greater than 5 for w < 1.2, the mag-
nitude of the closed-loop frequency response remains between 0.8 @d .1.2 for thos'e
frequencies. The inequalities given by (6.7-9) provide only a rough guideline to wk}at is
needed to achieve a certain closed-loop response. To meet the step response specifica-
tions, not only must the magnitude of the closed-loop response pe kept near. one fo; tge
appropriate frequencies (w < 1.2 in this case) bl:ll also peaks in the ma.gmtudc? o L e;
closed-loop frequency response at higher frequencies must be avoided. This requires thai
the return difference be kept from being too small at any frequency.

The guidelines needed to produce an adequate closed-loop frequency response
become clearer by looking at Fig. 6.7-1. This figure shows a polar frequency p}ot complete
with M-circles for a typical loop gain transfer function. Recall from Section 6.5 that,
from the M-circles, the magnitude of the closed-loop frequency response can be rea.d
off at any frequency. The plot of Fig. 6.7-1 would be an acceptable loop gain for this

M=13

Zas
~

0.5 / MZ3

Imaginary
X
O
\\_/
=g
/-Il L

-0.5

\‘__—/‘
T
? " i
'S

L

-2 -1 0 1 2
Real

FIGURE 6.7-1 . ) ‘
Performance specifications for transient response illustrated with M -circles.
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example since the peak M-circle reached is M = 1.1 near @ = 1.2 and the plot moves
through M-circles of smaller values for higher frequencies.

In this typical example, the guidelines of Eq. (6.7-9) are conservative in that it is
not required to have the return difference greater than 5 for all < 1.2. The guidelines
are somewhat lacking as mentioned above in that they don’t guarantee that a peak in the
closed-loop frequency won'’t occur at a higher frequency, causing oscillations.

In spite of the shortcomings in precise guarantees, it is still useful to provide
a guideline for adequate transient response of the closed-loop system by bounding
the return difference from below. For many control systems, the loop gain transfer
function decreases monotonically producing a smooth polar frequency plot similar to
Fig. 6.7-1. For these systems the range of frequencies where the magnitude of the
return difference stays greater than one provides a good estimate of the bandwidth
of the controller. The greater the frequency range over which the magnitude of the
return difference stays larger than one, the wider is the bandwidth of the system and
the faster can the system respond to step inputs. In addition, the magnitude of the
return difference should be kept as large as possible over all frequencies to guard
against high frequency oscillations. '

In the example, we have shown that the concept of providing a performance
measure for a control system by bounding the magnitude of the return difference as in
Eq. (6.7-1) works well for specifications involving disturbance rejection and sensitivity
reduction. The bound of Eq. (6.7-1) also provides a guideline for transient response
specifications. This lack of precision for transient response specification is acceptable
because the transient response of a robustly stable control loop that responds almost
fast enough can usually be modified to precisely meet specifications using a prefilter
on the command input.

Equation (6.7-1) can be rewritten as

1 1
1+ é(jw)‘ = PG (6.7-10)
or
pljo) ,;' <1 6.7-11)
1+ G(jw)

The function $(jw) = (14+G(jw))™! is called the sensitivity function of the perturbed
control system since the response of the control system is relatively insensitive to
parameter changes and disturbances if this function is small.

_ Notice that the performance requirement of Eq. (6.7-1) is written as a function
of G(jw). It is desirable to design a controller based upon the nominal model of
the plant G(jw) that meets the performance requirement of Eq. (6.7-1) for any plant
G( Jw) in the collection given by the multiplicative perturbation model of Egs. (6.6-5)
and (6.6-6).

To assure that the sensitivity function of the perturbed control system $( jw)
is small for any allowable perturbation L, ( jw) it is useful to find how large S( Jw)
can become when facing the most damaging perturbation allowable. The goal is to
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find the maximum value of S (jw) as L,,(jw) is allowed to vary over all allowable
perturbations.
max ’5 ( ja))‘
L) <l (jw)
1

= max —_—

Lo )] <l ) ‘1 + G(ja))}

1

= Lo o 11+ GU@) + GUo) L)l

! : (6.7-12)
114+ G(jw) + G(jw)Ly(jw)

min
|Lm () <l (o)

Clearly, minimizing the denominator maximizes th e'xpr.essi(_)n of Eq. (§.7-32t)) wherﬁ
various definitions have been substituted. The mmlmlgatlon is accomplishe y y r(cieat
izing that the worst case L, (jw) has maximal magnitude and has phase aligned to
subtract this maximal magnitude away from the first two terms.

min |14 G(jo) + G(jo)Ln(jw)l
L (o) <l )

=1+ G(jw}| — |G (jo)ly (jow)l (6.7-13)
So
. 1
DTS Stjo)| = 1+ G ()l = G(j@)lin(je)
= ! ! (6.7-14)
GGl ] GG [,
1+ G(jw)
The nominal complementary sensitivity function, T (jew) is defined as
Gl _ L - S(w) (6.7-15)

T = 17600 = " 1+ 60w

The complementary sensitivity function equals one minus the sensitivity function.
(The complementary sensitivity function is also equal to the .cllo.sed—loop response
function for the G configuration.) A final expression for the sensitivity under the .vs_lolrst
case perturbation in terms of the nominal sensitivity and complementary sensitivity

functions can be written as

1
o ' 6.7-16)
}S(](L))‘ =|5(jw)l (1 _ ;T(jw)llm(jw)> (

max
Lo (j) <l (jo)
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If the worst case perturbed sensitivity function remains less than P~ (jw) then the
sensitivity functions for all allowable perturbations are less than p~1( Jw). The robust
performance condition of Eq. (6.7-10) is satisfied if

1 1
S(j T — 6.7-17
St (1—|T(jw)llm(jw)> = PG ©.7-17
Equation (6.7-17) can be rewritten as .
ISC@)lp(jo) + 1T (jo)ll, (jo) < 1 (6.7-18a)
or, more explicitly,
1 . G(jw) .
—_— —1, 1 7-
ll n G(jw)}p(ﬂo) + T+ G(a) (jw) < (6.7-18b)

Equation (6.7-18) provides some interesting information. First note that keeping the
second term less than one matches Eq. (6.6-12) and guarantees stability robustness.
Keeping the first term less than one matches Eq. (6.7-10) with G ( jw) replacing é( jw)
and this provides for acceptable nominal performance, i.e., acceptable performance
would result if the plant actually responded like G »(jow). When there is mismodeling
as represented by /,,( jw) the nominal design must exceed the performance specifica-
tion by enough of a margin to account for modeling error. Alternatively, the nominal
design must not only allow enough stability margin to ensure stability but must allow
a greater margin to maintain performance.

It is perhaps even more interesting to view Eq. (6.7-18) as a weighted tradeoff
between two terms. The first term contains the magnitude of the nominal sensitivity
function, weighted by the performance requirement, which is large at frequencies
where good performance is required. The second term contains the magnitude of the
complementary sensitivity function weighted by the bound on the modeling error,
which is large at frequencies where the plant is not well modeled.

Since by Eq. (6.7-15) the sensitivity function and the complementary sensitivity
function sum to one they cannot both be small at the same frequency. Thus, by using
Eq. (6.7-18) it can be seen that good control system performance can be maintained
only at frequencies where the plant is well modeled. The modeling error quantified by
In(jw) is usually large at high frequencies. The complementary sensitivity function
is then required to be small at high frequencies. A small complementary sensitivity
function means a sensitivity function very near one, dictating that the achievable per-
formance function p( Jw) be somewhat less than one at high frequencies. The resulting
implication that the magnitude of the sensitivity function cannot be kept smaller than
one for all frequencies means poor performance at some frequencies in the areas of
disturbance rejection, sensitivity reduction and reference input tracking. Luckily, in
most situations, a large performance bound is required only for low frequency ref-
erence inputs and disturbances. Similar logic then dictates that 1, ( Jw), the modeling
error, be small at low frequencies. If the control designers are asked to produce strong
performance results at frequencies where the modeling error is large, they must re-
ply that they can not. Either the performance requirements must be relaxed at those



