Topic \#18

16.31 Feedback Control Systems

Deterministic LQR

- Optimal control and the Riccati equation
- Weight Selection

Linear Quadratic Regulator (LQR)

- Have seen the solutions to the LQR problem, which results in linear full-state feedback control.
- Would like to get some more insight on where this came from.
- Deterministic Linear Quadratic Regulator

Plant:

$$
\begin{aligned}
\dot{\mathbf{x}} & =A \mathbf{x}+B_{u} \mathbf{u}, \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} \\
\mathbf{z} & =C_{z} \mathbf{x}
\end{aligned}
$$

Cost:

$$
J_{L Q R}=\frac{1}{2} \int_{0}^{t_{f}}\left[\mathbf{z}^{T} R_{\mathrm{zz}} \mathbf{z}+\mathbf{u}^{T} R_{\mathrm{uu}} \mathbf{u}\right] d t+\frac{1}{2} \mathbf{x}^{T}\left(t_{f}\right) P\left(t_{f}\right) \mathbf{x}\left(t_{f}\right)
$$

- Where $R_{\mathrm{zz}}>0$ and $R_{\mathrm{uu}}>0$
- Define $R_{\mathrm{xx}}=C_{z}^{T} R_{z z} C_{z} \geq 0$
- Problem Statement: Find input $\mathbf{u} \forall t \in\left[t_{0}, t_{f}\right]$ to $\min J_{L Q R}$
- This is not necessarily specified to be a feedback controller.
- Control design problem is a constrained optimization, with the constraints being the dynamics of the system.

Constrained Optimization

- The standard way of handling the constraints in an optimization is to add them to the cost using a Lagrange multiplier
- Results in an unconstrained optimization.
- Example: $\min f(x, y)=x^{2}+y^{2}$ subject to the constraint that $c(x, y)=x+y+2=0$

Fig. 1: Optimization results

- Clearly the unconstrained minimum is at $x=y=0$
- To find the constrained minimum, form augmented cost function

$$
L \triangleq f(x, y)+\lambda c(x, y)=x^{2}+y^{2}+\lambda(x+y+2)
$$

- Where λ is the Lagrange multiplier
- Note that if the constraint is satisfied, then $L \equiv f$
- The solution approach without constraints is to find the stationary point of $f(x, y)(\partial f / \partial x=\partial f / \partial y=0)$
- With constraints we find the stationary points of L

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y}=\frac{\partial L}{\partial \lambda}=0
$$

which gives

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=2 x+\lambda=0 \\
& \frac{\partial L}{\partial y}=2 y+\lambda=0 \\
& \frac{\partial L}{\partial \lambda}=x+y+2=0
\end{aligned}
$$

- This gives 3 equations in 3 unknowns, solve to find

$$
x^{\star}=y^{\star}=-1
$$

- Key point here is that due to the constraint, the selection of x and y during the minimization are not independent
- Lagrange multiplier captures this dependency.

LQR Optimization

- LQR optimization follows the same path, but it is complicated by the fact that the cost involves an integration over time
- See 16.323 OCW notes for details
- To optimize the cost, follow the same procedure of augmenting the constraints in the problem (the system dynamics) to the cost (integrand, then integrate by parts) to form the Hamiltonian:

$$
H=\frac{1}{2}\left(\mathbf{x}^{T} R_{\mathrm{xx}} \mathbf{x}+\mathbf{u}^{T} R_{\mathrm{uu}} \mathbf{u}\right)+\mathbf{p}^{T}\left(A \mathbf{x}+B_{u} \mathbf{u}\right)
$$

- $\mathbf{p} \in \mathbb{R}^{n \times 1}$ is called the Adjoint variable or Costate
- It is the Lagrange multiplier in the problem.
- The necessary conditions for optimality are then that:

1. $\dot{\mathbf{x}}=\frac{\partial H^{T}}{\partial \mathbf{p}}=A \mathbf{x}+B_{u} \mathbf{u}$ with $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$
2. $\dot{\mathbf{p}}=-\frac{\partial H^{T}}{\partial \mathbf{x}}=-R_{\mathrm{xx}} \mathbf{x}-A^{T} \mathbf{p}$ with $\mathbf{p}\left(t_{f}\right)=P_{t_{f}} \mathbf{x}\left(t_{f}\right)$
3. $\frac{\partial H}{\partial \mathbf{u}}=0 \Rightarrow R_{\mathrm{uu}} \mathbf{u}+B_{u}^{T} \mathbf{p}=0$, so $\mathbf{u}^{\star}=-R_{\mathrm{uu}}^{-1} B_{u}^{T} \mathbf{p}$

- Can check for a minimum by looking at $\frac{\partial^{2} H}{\partial \mathbf{u}^{2}} \geq 0$ (need to check that $R_{\text {uu }} \geq 0$)
- Key point is that we now have that

$$
\dot{\mathbf{x}}=A \mathbf{x}+B_{u} \mathbf{u}^{\star}=A \mathbf{x}-B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \mathbf{p}
$$

which can be combined with equation for the adjoint variable

$$
\begin{gathered}
\dot{\mathbf{p}}=-R_{\mathrm{xx}} \mathbf{x}-A^{T} \mathbf{p}=-C_{z}^{T} R_{\mathrm{zz}} C_{z} \mathbf{x}-A^{T} \mathbf{p} \\
\Rightarrow \\
{\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\dot{\mathbf{p}}
\end{array}\right]=\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-C_{z}^{T} R_{\mathrm{zz}} C_{z} & -A^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{p}
\end{array}\right]}
\end{gathered}
$$

which is called the Hamiltonian Matrix.

- Matrix describes closed loop dynamics for both \mathbf{x} and \mathbf{p}.
- Dynamics of \mathbf{x} and \mathbf{p} are coupled, but \mathbf{x} known initially and \mathbf{p} known at terminal time, since $\mathbf{p}\left(t_{f}\right)=P_{t_{f}} \mathbf{x}\left(t_{f}\right)$
- Two point boundary value problem \Rightarrow typically hard to solve.
- However, in this case, we can introduce a new matrix variable P and it is relatively easy to show that:

1. $\mathbf{p}=P \mathbf{x}$
2. It is relatively easy to find P.

- In fact, P must satisfy

$$
0=A^{T} P+P A+C_{z}^{T} R_{\mathrm{zz}} C_{z}-P B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} P
$$

- Which, is the matrix algebraic Riccati Equation.
- The control gains are then

$$
\mathbf{u}_{\mathrm{opt}}=-R_{\mathrm{uu}}^{-1} B_{u}^{T} \mathbf{p}=-R_{\mathrm{uu}}^{-1} B_{u}^{T} P \mathbf{x}=-K \mathbf{x}
$$

- So the optimal control inputs can in fact be computed using linear feedback on the full system state

LQR Stability Margins

- LQR approach selects closed-loop poles that balance between system errors and the control effort.
- Easy design iteration using R_{uu}
- Sometimes difficult to relate the desired transient response to the LQR cost function.
- Particularly nice thing about the LQR approach is that the designer is focused on system performance issues
- Turns out that the news is even better than that, because LQR exhibits very good stability margins
- Consider the LQR stability robustness.

$$
\begin{aligned}
J & =\frac{1}{2} \int_{0}^{\infty} \mathbf{z}^{T} \mathbf{z}+\rho \mathbf{u}^{T} \mathbf{u} d t \\
\dot{\mathbf{x}} & =A \mathbf{x}+B_{u} \mathbf{u}, \quad \mathbf{z}=C_{z} \mathbf{x}, \quad R_{\mathrm{xx}}=C_{z}^{T} C_{z}
\end{aligned}
$$

- Study robustness in the frequency domain.
- Loop transfer function $L(s)=K(s I-A)^{-1} B_{u}$
- Cost transfer function $C(s)=C_{z}(s I-A)^{-1} B_{u}$
- Can develop a relationship between the open-loop cost $C(s)$ and the closed-loop return difference $I+L(s)$ called the Kalman Frequency Domain Equality

$$
[I+L(-s)]^{T}[I+L(s)]=1+\frac{1}{\rho} C^{T}(-s) C(s)
$$

- Written for MIMO case, but look at the SISO case to develop further insights ($s=\mathbf{j} \omega$)

$$
\begin{aligned}
{[I+L(-\mathbf{j} \omega)][I+L(\mathbf{j} \omega)] } & =\left(I+L_{r}(\omega)-\mathbf{j} L_{i}(\omega)\right)\left(I+L_{r}(\omega)+\mathbf{j} L_{i}(\omega)\right) \\
& \equiv|1+L(\mathbf{j} \omega)|^{2}
\end{aligned}
$$

and

$$
C^{T}(-\mathbf{j} \omega) C(\mathbf{j} \omega)=C_{r}^{2}+C_{i}^{2}=|C(\mathbf{j} \omega)|^{2} \geq 0
$$

- Thus the KFE becomes

$$
|1+L(\mathbf{j} \omega)|^{2}=1+\frac{1}{\rho}|C(\mathbf{j} \omega)|^{2} \geq 1
$$

- Implications: The Nyquist plot of $L(\mathrm{j} \omega)$ will always be outside the unit circle centered at $(-1,0)$.

- Great, but why is this so significant? Recall the SISO form of the Nyquist Stability Theorem:

If the loop transfer function $L(s)$ has P poles in the RHP s-plane (and $\lim _{s \rightarrow \infty} L(s)$ is a constant), then for closed-loop stability, the locus of $L(\mathbf{j} \omega)$ for $\omega:(-\infty, \infty)$ must encircle the critical point $(-1,0) P$ times in the counterclockwise direction (Ogata528)

- So we can directly prove stability from the Nyquist plot of $L(s)$. But what if the model is wrong and it turns out that the actual loop transfer function $L_{A}(s)$ is given by:

$$
L_{A}(s)=L_{N}(s)[1+\Delta(s)], \quad|\Delta(\mathbf{j} \omega)| \leq 1, \quad \forall \omega
$$

- We need to determine whether these perturbations to the loop TF will change the decision about closed-loop stability
\Rightarrow can do this directly by determining if it is possible to change the number of encirclements of the critical point

stable OL

Fig. 2: Perturbation to the LTF causing a change in the number of encirclements

- Claim is that "since the LTF $L(\mathbf{j} \omega)$ is guaranteed to be far from the critical point for all frequencies, then LQR is VERY robust."
- Can study this by introducing a modification to the system, where nominally $\beta=1$, but we would like to consider:
- The gain $\beta \in \mathbb{R}$
- The phase $\beta \in e^{j \phi}$

- In fact, can be shown that:
- If open-loop system is stable, then any $\beta \in(0, \infty)$ yields a stable closed-loop system. For an unstable system, any $\beta \in(1 / 2, \infty)$ yields a stable closed-loop system
\Rightarrow gain margins are $(1 / 2, \infty)$
- Phase margins of at least $\pm 60^{\circ}$
- Both of these robustness margins are very large on the scale of what is normally possible for classical control systems.

Fig. 3: Example of LTF for an open-loop stable system

Fig. 4: Example loop transfer functions for open-loop unstable system.

MIT OpenCourseWare
http://ocw.mit.edu

16.30 / 16.31 Feedback Control Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

