
Topic #18 

16.31 Feedback Control Systems 

Deterministic LQR 

• Optimal control and the Riccati equation


• Weight Selection 
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Linear Quadratic Regulator (LQR)


•	 Have seen the solutions to the LQR problem, which results in linear 
full-state feedback control. 

• Would like to get some more insight on where this came from. 

•	 Deterministic Linear Quadratic Regulator 

Plant: 

ẋ = Ax + Buu, x(t0) = x0


z = Czx


Cost: �

1 tf � � 1


JLQR = z TRzzz + u TRuuu dt + x T (tf )P (tf )x(tf )
2 0	 2 

• Where Rzz > 0 and Ruu > 0 

• Define Rxx = Cz
TRzzCz ≥ 0 

•	 Problem Statement: Find input u ∀t ∈ [t0, tf ] to min JLQR 

• This is not necessarily specified to be a feedback controller. 

• Control design problem is a constrained optimization, with the con
straints being the dynamics of the system. 

November 5, 2010 



Fall 2010	 16.30/31 18–3


Constrained Optimization 

•	 The standard way of handling the constraints in an optimization is to 
add them to the cost using a Lagrange multiplier 

• Results in an unconstrained optimization. 

• Example: min f (x, y) = x2 + y2 subject to the constraint that 
c(x, y) = x + y + 2 = 0 
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Fig. 1: Optimization results


• Clearly the unconstrained minimum is at x = y = 0
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• To find the constrained minimum, form augmented cost function 

L � f (x, y) + λc(x, y) = x 2 + y 2 + λ(x + y + 2) 

• Where λ is the Lagrange multiplier 

• Note that if the constraint is satisfied, then L ≡ f 

•	 The solution approach without constraints is to find the stationary 
point of f (x, y) (∂f/∂x = ∂f/∂y = 0) 

• With constraints we find the stationary points of L


∂L ∂L ∂L

= = = 0 

∂x ∂y ∂λ 
which gives 

∂L 
=	 2x + λ = 0 

∂x 
∂L 

=	 2y + λ = 0 
∂y 
∂L 

=	 x + y + 2 = 0 
∂λ 

•	 This gives 3 equations in 3 unknowns, solve to find 

x� = y� = −1 

•	 Key point here is that due to the constraint, the selection of x and y 
during the minimization are not independent 

• Lagrange multiplier captures this dependency. 
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LQR Optimization


•	 LQR optimization follows the same path, but it is complicated by the 
fact that the cost involves an integration over time 

See 16.323 OCW notes for details • 

•	 To optimize the cost, follow the same procedure of augmenting the 
constraints in the problem (the system dynamics) to the cost (inte
grand, then integrate by parts) to form the Hamiltonian: 

1 �	 � 
H	= x TRxxx + u TRuuu + p T (Ax + Buu)

2 

• p ∈ Rn×1 is called the Adjoint variable or Costate 

• It is the Lagrange multiplier in the problem. 

•	 The necessary conditions for optimality are then that: 

1.	ẋ = ∂H T 
= Ax + Buu with x(t0) = x0 

∂p 

2.	ṗ = −∂H T 
= −Rxxx − AT p with p(tf ) = Ptf x(tf )

∂x 

3.	∂H = 0 Ruuu + BT p = 0, so u� = −R−1BT p
∂u 

⇒ u	 uu u 

Can check for a minimum by looking at ∂
2H ≥ 0 (need to check •	
∂u 2 

that Ruu ≥ 0) 
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•	 Key point is that we now have that 

ẋ = Ax + Buu � = Ax − BuR
−1BT puu u 

which can be combined with equation for the adjoint variable 

ṗ = −Rxxx − AT p = −CTRzzCzx − AT pz � � �	 � � � 
ẋ	 A R−1BT x−Bu uu u 

= ⇒ 
ṗ −CzTRzzCz −AT p 

which is called the Hamiltonian Matrix. 

• Matrix describes closed loop dynamics for both x and p. 

• Dynamics of x and p are coupled, but x known initially and p 
known at terminal time, since p(tf ) = Ptf x(tf ) 

• Two point boundary value problem ⇒ typically hard to solve. 

•	 However, in this case, we can introduce a new matrix variable P and 
it is relatively easy to show that: 

1.	p = P x 

2. It is relatively easy to find P . 

•	 In fact, P must satisfy 

0 = ATP + PA + CTRzzCz − PBuR
−1BTPz	 uu u 

• Which, is the matrix algebraic Riccati Equation. 

•	 The control gains are then 

uopt = −R−1Bu
T p = −R−1Bu

TP x = −Kxuu	 uu 

• So the optimal control inputs can in fact be computed using 
linear feedback on the full system state 
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LQR Stability Margins


•	 LQR approach selects closed-loop poles that balance between system 
errors and the control effort. 

• Easy design iteration using Ruu 

• Sometimes difficult to relate the desired transient response to the 
LQR cost function. 

•	 Particularly nice thing about the LQR approach is that the designer 
is focused on system performance issues 

•	 Turns out that the news is even better than that, because LQR ex
hibits very good stability margins 

Consider the LQR stability robustness. 

1 ∞ 

J	 = z T z + ρu T u dt 
2 0 

ẋ = Ax + Buu, z = Czx, Rxx = Cz
TCz 

Bu (sI − A)−1 K

Cz 
z 

r	 x 

− 

•	 Study robustness in the frequency domain. 

• Loop transfer function L(s) = K(sI − A)−1Bu 

• Cost transfer function C(s) = Cz(sI − A)−1Bu 
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•	 Can develop a relationship between the open-loop cost C(s) and the 
closed-loop return difference I +L(s) called the Kalman Frequency 
Domain Equality 

1 
[I + L(−s)]T [I + L(s)] = 1 + CT (−s)C(s)

ρ 

•	 Written for MIMO case, but look at the SISO case to develop further 
insights (s = jω) 

[I + L(−jω)] [I + L(jω)]	 = (I + Lr(ω) − jLi(ω))(I + Lr(ω) + jLi(ω)) 

≡ |1 + L(jω)|2 

and 
CT (−jω)C(jω) = Cr 

2 + Ci 
2 = |C(jω)|2 ≥ 0 

Thus the KFE becomes • 

|1 + L(jω)|2 = 1 + 
ρ

1 |C(jω)|2 ≥ 1 
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•	 Implications: The Nyquist plot of L(jω) will always be outside the 
unit circle centered at (−1, 0). 
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•	 Great, but why is this so significant? Recall the SISO form of the 
Nyquist Stability Theorem: 

If the loop transfer function L(s) has P poles in the RHP s-plane (and 
lims→∞ L(s) is a constant), then for closed-loop stability, the locus 
of L(jω) for ω : (−∞, ∞) must encircle the critical point (−1, 0) P 
times in the counterclockwise direction (Ogata528) 
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•	 So we can directly prove stability from the Nyquist plot of L(s). 
But what if the model is wrong and it turns out that the actual loop 
transfer function LA(s) is given by: 

LA(s) = LN (s)[1 + Δ(s)], |Δ(jω)| ≤ 1, ∀ω 

•	 We need to determine whether these perturbations to the loop TF 
will change the decision about closed-loop stability 

⇒	 can do this directly by determining if it is possible to change the 
number of encirclements of the critical point 
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Fig. 2: Perturbation to the LTF causing a change in the number of encirclements
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•	 Claim is that “since the LTF L(jω) is guaranteed to be far from the 
critical point for all frequencies, then LQR is VERY robust.” 

• Can study this by introducing a modification to the system, where 
nominally β = 1, but we would like to consider: 
� The gain β ∈ R 

� The phase β ∈ ejφ 

− 
K(sI − A)−1Bu β 

•	 In fact, can be shown that: 

• If open-loop system is stable, then any β ∈ (0, ∞) yields a stable 
closed-loop system. For an unstable system, any β ∈ (1/2, ∞) 
yields a stable closed-loop system 
⇒	gain margins are (1/2, ∞) 

• Phase margins of at least ±60◦ 

•	 Both of these robustness margins are very large on the scale of what 
is normally possible for classical control systems. 
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Fig. 3: Example of LTF for an open-loop 
stable system 

Fig. 4: Example loop transfer functions 
for open-loop unstable system. 
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