16.30/31 Feedback Control Systems

Overview of Nonlinear Control Synthesis

Emilio Frazzoli

Aeronautics and Astronautics Massachusetts Institute of Technology

December 3, 2010

E. Frazzoli (MIT)

Nonlinear Control

 ►
 ►
 ►
 ►

(日) (四) (三) (三)

An overview of nonlinear control design methods

- Extend applicability of linear design methods:
 - Gain scheduling
 - Integrator anti-windup schemes
- Geometric control
 - Feedback linearization
 - Dynamics inversion
 - Differential flatness
- Adaptive control
 - Neural network augmentation
- Lyapunov-based methods/Contraction theory
 - Control Lyapunov Functions
 - Sliding mode control
 - Backstepping
- Computational/logic approaches
 - Hybrid systems
 - Model Predictive Control

< 日 > < 同 > < 回 > < 回 > < 回

Gain scheduling

- Nonlinear system: $\dot{x} = f(x, u)$.
- Choose *n* equilibrium points, i.e., (x_i^*, u_i^*) , such that $f(x_i^*, u_i^*) = 0$, i = 1, ..., n.
- For each of these equilibria, linearize the system and design a "local" control law $u_i(x) = u_i^* K(x x_i^*)$ for the linearization.
- A global control law consists of:
 - Choose the right control law, as a function of the state: $i = \sigma(x)$
 - Use that control law: $u(x) = u_{\sigma(x)}(x)$

Control Lyapunov functions

• Nonlinear system: $\dot{x} = f(x) + g(x)u$, with equilibrium at x = 0

- A function $V: x \mapsto V(x)$ is a Control Lyapunov Function if
 - It is positive definite
 - V(0) = 0.
 - It is always possible to find *u* such that

$$\dot{V} = \frac{\partial V}{\partial x}f(x) + \frac{\partial V}{\partial x}g(x)u \leq 0.$$

• If V is a CLF, it is always possible to design a control law ensuring $\dot{V} \leq 0!$

Differential Flatness

• A dynamical system

$$\begin{array}{rcl} \frac{d\,x}{dt} &=& f(x,u),\\ z &=& h(x,u). \end{array}$$

is said to be differentially flat, with flat output z, if one can compute the state and input trajectories as a function of the flat outputs and a finite number of its derivatives, i.e., if one can find a map Ξ such that

$$(x, u) = \Xi(z, \dot{z}, \ldots, z^{(l)}).$$

• Differential flatness can be shown to be equivalent to (dynamic) feedback linearizability. (But more intuitive.)

A differentially-flat model of aircraft dynamics 1/4

- Given a reference trajectory, p_d , we can compute the reference velocity \dot{p}_d , and the reference acceleration \ddot{p}_d .
- Based on these, and assuming coordinated flight (and hence $\dot{p}_d \neq 0$) we can get a set of reference wind axes:
 - The x_w axis is aligned with the velocity vector p_d , i.e., $x_w := \dot{p}_d / \|\dot{p}_d\|$.
 - The acceleration can be written as

$$\ddot{p}_d = g + f_l/m,$$

where f_l is the aerodynamic/propulsive force in inertial frame, and g is the gravity vector.

- The main sources of forces for an airplane are the engine thrust and lift. Both are approximately contained within the symmetry plane of the aircraft. Hence, the z_w axis is chosen such that the (x_w, z_w) plane contains f_l .
- The y_w axis is chosen to complete a right-handed orthonormal triad.

A differentially-flat model of aircraft dynamics 2/4

- Assume that we can control independently:
 - The tangential acceleration¹ a_t along the wind velocity vector (x_w axis).
 - The normal acceleration a_n (along the z_w axis).
 - The roll rate ω_1 around the wind velocity vector (x_w axis).
- Recall $\ddot{p}_d = g + a_l = g + Ra_w$, where a_l is the acceleration in the inertial frame, a_w is the acceleration in the wind frame defined in the previous slide, and R is a rotation matrix, computed as a function of \dot{p}_d , \ddot{p}_d .
- Differentiating,

$$p_d^{(3)} = \dot{R}a_w + R\dot{a}_w = R(\omega \times a_w) + R\dot{a}_w.$$

• In addition, since $\dot{p}_d = VRe_1$ (coordinated flight), we also have

$$\ddot{p}_d = g + Ra_w = \dot{V}Re_1 + VR(\omega imes e_1)$$

¹Here and below acceleration is understood as "acceleration due to aerodynamic/propulsive forces."

• In coordinates, the second equation reads:

$$\ddot{p}_d = R \begin{bmatrix} \dot{V} \\ V \omega_3 \\ -V \omega_2 \end{bmatrix},$$

i.e., ω_2 and ω_3 can be computed from \dot{p} and \ddot{p} .

Also,

$$\frac{d}{dt^3} \begin{bmatrix} p_{d,1} \\ p_{d,2} \\ p_{d,3} \end{bmatrix} = R \begin{bmatrix} \omega_2 a_n + \dot{a}_t \\ \omega_3 a_t - \omega_1 a_n \\ -\omega_2 a_t + \dot{a}_n \end{bmatrix}$$

• Finally, we have

$$\begin{bmatrix} \dot{a}_t\\ \omega_1\\ \dot{a}_n \end{bmatrix} = \begin{bmatrix} -\omega_2 a_n\\ \omega_3 a_t/a_n\\ \omega_2 a_t \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0\\ 0 & -1/a_n & 0\\ 0 & 0 & 1 \end{bmatrix} R^T \frac{d^3}{dt^3} \begin{bmatrix} p_{d,1}\\ p_{d,2}\\ p_{d,3} \end{bmatrix}$$

• I.e., the system is differentially flat, with flat output p_d , as long as

- $V = \|\dot{p}_d\| \neq 0$: if the velocity is zero, then coordinated flight is not well defined.
- $a_n = \left(I \frac{1}{V^2}\dot{p}_d\dot{p}_d^T\right)(\ddot{p}_d g) \neq 0$: if the normal acceleration is zero, the roll attitude is not well defined.

Incorporating aerodynamics and propulsive models

- We have derived a differentially flat system for aircraft dynamics, with flat output p_d (position trajectory) and inputs: (*a*_t, ω₁, *a*_n).
- How can we control a_t , a_n (or their derivatives)?
 - The wing lift is

$$L=\frac{1}{2m}\rho V^2 S C_{L_{\alpha}}\alpha+a_{L_0},$$

the drag is similarly computed.

- The engine thrust T is a function of the throttle setting δ_T and other variables.
- The acceleration components in wind axes are given by

$$a_t = T(\delta_T) \cos \alpha - D(\alpha),$$
$$a_n = -T(\delta_T) \sin \alpha - L(\alpha).$$

- Compute, e.g., α and δ_T , from the desired a_t , a_n .
- Rely on a CAS that tracks the commanded α , δ_T , and ω_1 .

Adding feedback

- So far, we have shown that, given a reference trajectory, we can compute uniquely (modulo a 180° roll rotation) the corresponding state and control input trajectories.
- What if the initial condition is not on the reference trajectory? What if there are disturbances that make the aircraft deviate from the trajectory? We need feedback.
- Let $p: t \mapsto p(t)$ be the actual position of the vehicle, and consider a system in which $p^{(3)} = u$, e.g.,

$$\frac{d}{dt} \begin{bmatrix} p \\ \dot{p} \\ \ddot{p} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 \\ 0 & 0 & I \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ \dot{p} \\ \ddot{p} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} u$$

Tracking control law

• Define the error $e = p - p_d$. The error dynamics are given by

$$\frac{d}{dt} \begin{bmatrix} e \\ \dot{e} \\ \ddot{e} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 \\ 0 & 0 & I \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e \\ \dot{e} \\ \ddot{e} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} \left(u - p_d^{(3)} \right)$$

• If we

set

$$u = p_d^{(3)} - K[e, \dot{e}, \ddot{e}]^T,$$

where k is a stabilizing control gain for the error dynamics, and • compute a_t, a_n, ω_1 from $(p, \dot{p}, \ddot{p}, u)$ (vs. p_d and its derivatives)

then,

$$\lim_{t\to+\infty} e(t) = \lim_{t\to+\infty} (p(t) - p_d(t)) = 0,$$

as desired.

Some remarks

- Convergence assured "almost" globally, the control law breaks down if at any point $\dot{x} = 0$, or $a_n = 0$.
- A modification of this control law can ensure path tracking (vs. trajectory tracking), requiring less thrust control effort. See Hauser & Hindman '97.
- Some limitations:
 - Simplified aerodynamic/propulsive models.
 - Saturations are not taken into account (unbounded a_n , a_t , ω_1).
 - Coordinated flight is an additional constraints, no control over roll: this model cannot account for, e.g., a split-S maneuver.

16.30 / 16.31 Feedback Control Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.