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e Constrained nonlinear optimization

16.323 Lecture 2

Nonlinear Optimization

e Lagrange multipliers

e Penalty/barrier functions also often used, but will not be discussed here.

[y

el =0

f.:." !-:l'.l =0 .

B

/

o e

Xy

Figure by MIT OpenCourseWare.



Spr 2008 16.323 2-1

Constrained Optimization

e Consider a problem with the next level of complexity: optimization
with equality constraints

min F(y)
y
such that f(y) =0

a vector of n constraints

e To simplify the notation, assume that the p-state vector y can be
separated into a decision m-vector u and a state n-vector x related to

the decision variables through the constraints. Problem now becomes:
min F'(x, u)
u

such that f(x,u) =0

— Assume that p > n otherwise the problem is completely specified
by the constraints (or over specified).

e One solution approach is direct substitution, which involves

— Solving for x in terms of u using f

— Substituting this expression into F' and solving for u using an
unconstrained optimization.

— Works best if f is linear (assumption is that not both of f and F
are linear.)
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e Example: minimize F' = 2% + 235 subject to the constraint that
rT1+xo+2=0

— Clearly the unconstrained minimum is at 1 = 29 = 0

— Substitution in this case gives equivalent problems:

min Fy = (=2 — 9)* + 23
9
or
min Fy = 23 + (=2 — 21)?
T

for which the solution (OF,/0zs = 0) is 21 = x9 = —1

Figure 2.8: Simple function minimization with constraint.

e Bottom line: substitution works well for linear constraints, but pro-
cess hard to generalize for larger systems/nonlinear constraints.
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Lagrange Multipliers

e Need a more general strategy - using Lagrange multipliers.
e Since f(x,u) = 0, we can adjoin it to the cost with constants
M =[x oA\ ]

without changing the function value along the constraint to create
Lagrangian function

L(x,u,A) = F(x,u) + A f(x,u)

e Given values of x and u for which f(x,u) = 0, consider differential
changes to the Lagrangian from differential changes to x and u:

oL oL
dL = —dx + —d
o0x Xt ou'"
where 2& = g—uLl "o 8{1—?& } (row vector)

e Since u are the decision variables it is convenient to choose \ so that
oL A OF of
4 }\T _

oF (0f\
=X = o (a—x) (22)

e To proceed, must determine what changes are possible to the cost
keeping the equality constraint satisfied.

— Changes to x and u are such that f(x,u) = 0, then

of of
of \ ~ of
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e [hen the allowable cost variations are

OF OF
_(Lor oy e or)
B ox \ 0x du Ou "
 (OF . of

0L

e So the gradient of the cost [’ with respect to u while keeping the
constraint f(x,u) = 0 is just
oL
ou
and we need this gradient to be zero to have a stationary point so

that dFF =0V du # 0.

e Thus the necessary conditions for a stationary value of F' are

OL

L
L
oy = fxw) =0 (2.10)

which are 2n + m equations in 2n + m unknowns.

e Note that Egs. 2.8-2.10 can be written compactly as

oL
9y =" (2.11)
oL

o =0 (2.12)

— The solutions of which give the stationary points.
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Intuition

e (Can develop the intuition that the constrained solution will be a point
of tangency of the constant cost curves and the constraint function

— No further improvements possible while satisfying the constraints.

e Equivalent to saying that the gradient of the cost ftn (normal to
the constant cost curve) OF/Jy [black lines] must lie in the space
spanned by the constraint gradients 0f /Jy [red lines]

— Means cost cannot be improved without violating the constraints.

— In 2D case, this corresponds to 0F/dy being collinear to 0f /0y

e Note: If this were not true, then it would be possible to take dy in
the negative of the direction of the component of the cost gradient
orthogonal to the constraint gradient, thereby reducing the cost and
still satisfying the constraint.

— Can see that at the points on the constraint above and blow the
optimal value of x5
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Figure 2.9: Minimization with equality constraints: shows that function and cost
gradients are nearly collinear near optimal point and clearly not far away.

flar, @) =22 = ((22)° = (21)? + (21) + 2) = 0 and F = 3x7 { o ]x

X
Figure 2.10: Zoomed in plot.
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Figure 2.11: Change constraint - note that the cost and constraint gradients are
collinear, but now aligned
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e Generalize this intuition of being “collinear” to larger state dimensions
to notion that the cost gradient must lie in the space spanned
by the constraint gradients.

— Equivalent to saying that it is possible to express the cost gradient
as a linear combination of the constraint gradients

— Again, if this was not the case, then improvements can be made
to the cost without violating the constraints.

e So that at a constrained minimum, there must exist constants such
that the cost gradient satisfies:

OF 0f1 0 fo dfn
Sl W NS Vi . WALl 21
ay A dy A oy dy (2.13)
of
= A= 2.14
% 2.14)
or equivalently that 5 5
F f
— A ==0
dy i dy

which is, of course, the same as Eq. 2.11.
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Constrained Example

e Minimize F(x1,z2) = 2%+ 235 subject to f(x1,23) = x1+22+2 =0
— Form the Lagrangian
L2 F(xy,29) + M(a, 20) = 28 + 25 + My + 22+ 2)

— Where A is the Lagrange multiplier

e The solution approach without constraints is to find the stationary
point of F'(x1,x9) (OF/0x1 = OF/0xy = 0)

— With constraints we find the stationary points of L

oL oL
=, = =0, ==0
T dy O\
which gives
OL
— = 2 A=0
o T+
OL
— =2 A=0
92s To +
oL _ +x9+2=0
ox  rTmRTET
e This gives 3 equations in 3 unknowns, solve to find 27 = 25 = —1

e The key point here is that due to the constraint, the selection of x4
and 5 during the minimization are not independent

— The Lagrange multiplier captures this dependency.

e Difficulty can be solving the resulting equations for the optimal points
(can be ugly nonlinear equations)
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Inequality Constraints

e Now consider the problem
min F(y) (2.15)
y
such that f(y) <0 (2.16)

— Assume that there are n constraints, but do not need to constrain
n with respect to the state dimension p since not all inequality
constraints will limit a degree of freedom of the solution.

e Have similar picture as before, but now not all constraints are active

— Black line at top is inactive since x1 + x9 — 1 < 0 at the optimal
value x = [I — 0.60] = it does not limit a degree of freedom in
the problem.

— Blue constraint is active, cost lower to the left, but f; > 0 there

X
Figure 2.12: Cost and constraint gradients shown

June 18, 2008



Spr 2008 16.323 2-11

B 2 4 o 1 2 3 4 5

Figure 2.13: Other cases of active and inactive constraints
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e Intuition in this case is that at the minimum, the cost gradient must
lie in the space spanned by the active constraints - so split as:

OF Of: of,
— = - = = 2.1
é?)f :%;:‘X é?}’ :E;:‘thajf ( 7)

active inactive

— And if the constraint is inactive, then can set A\; = (

e With equality constraints, needed the cost and function gradients to
be collinear, but they could be in any orientation.

e For inequality constraints, need an additional constraint that is related
to the allowable changes in the state.

— Must restrict condition 2.17 so that the cost gradient points in
the direction of the “allowable side” of the constraint (f < 0).
= Cost cannot be reduced without violating constraint.
= Cost and function gradients must point in opposite directions.

— Given 2.17, require that \; > 0 for active constraints
e Summary: Active constraints, A\; > 0, and Inactive ones \; = (
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e Given this, we can define the same Lagrangian as before L = F+X'T,
and the necessary conditions for optimality are

oL
= = 2.18
Dy (2.18)
oL .

Agy = 0V (2.19)

where the second property applies to all constraints

— Active ones have \; > 0 and satisfy % =f=0

— Inactive ones have \; = 0 and satisfy % = f; <.

e Equations 2.18 and 2.19 are the “essence”’ of the Kuhn-Tucker the-
orem in nonlinear programming - more precise statements available
with more careful specification of the constraints properties.

— Must also be careful in specifying the second order conditions for

a stationary point to be a minimum - see Bryson and Ho, sections
1.3 and 1.7.

e Note that there is an implicit assumption here of regularity — that
the active constraint gradients are linearly independent — for the \'s
to be well defined.

— Avoids redundancy
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Cost Sensitivity

e Often find that the constraints in the problem are picked somewhat
arbitrarily - some flexibility in the limits.

— Thus it would be good to establish the extent to which those
choices impact the solution.

e Note that at the solution point,

8_L PN or ot of
dy ay T oy
If the state changes by Ay, would expect change in the
F
Cost AF = 8—Ay
dy
Constraint  Af = of —Ay
dy
So then we have that
7 Of T
AF = =X —Ay = -\ Af
dy
dF
= — ==\

df

— Sensitivity of the cost to changes in the constraint func-
tion is given by the Lagrange Multipliers.

e For active constraints A > 0, so expect that dF'/df <0

— Makes sense because if it is active, then allowing f to increase will
move the constraint boundary in the direction of reducing F'

— Correctly predicts that inactive constraints will not have an impact.
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Alternative Derivation of Cost Sensitivity

e Revise the constraints so that they are of the form f < ¢, where
c > 0 is a constant that is nominally 0.

— The constraints can be rewritten as f = f — ¢ < 0, which means

OF  of
dy Oy
and assuming the f constraint remains active as we change ¢
of of
—=——1=0
dc  Oc

e Note that at the solution point,

oL OF  pOF  0f
(9y_0 dy Aé’y Aay

e To study cost sensitivity, must compute %—F. To proceed, note that
C

OF _ 0Fdy
Jc dy Oc
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Figure 2.14: Shows that changes to the constraint impact cost in a way that can be
predicted from the Lagrange Multiplier.
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Simple Constrained Example

o Consider case F' = :c% + x129 + :U% and 2o > 1, 21+ 19 < 3
e Form Lagrangian
L=a%+xm9+ 25 + M (1 — 22) + Ao + 29 — 3)

e Form necessary conditions:

L
a— = 201+ 29+ Xo=0
8331
L
a— = 1 +209 — A+ X=0
8332
oL
AM— = M\(1 — =0
1(9)\1 1( 5132)
oL
Ao— = A —3)=0
28)\2 2(x1 + X2 )

e Now consider the various options:

— Assume A\; = Ay = 0 both inactive

oL 271 + 0
-— = T Ty =
axl 1 2
OL

— = 21+ 212 =0
8562

gives solution x1 = xo = 0 as expected, but does not satisfy all
the constraints

— Assume A; = 0 (inactive), Ay > 0 (active)

0L
— = 2r1+ 22+ X =0
6561
oL
— = 1+ 220+ X =0
6@
oL
Mo =\ —3)=0
28)\2 2(x1 + X2 )

which gives solution 1 = x5 = 3/2, which satisfies the con-
straints, but F' = 6.75 and Ay = —9/2

June 18, 2008



Spr 2008 16.323 2-18

— Assume A\; > 0 (active), Ao = 0 (inactive)

oL 271 + 0

— = 211+ X9 =

9z, 1+ T2

oL

- = £U1+2£L'2—)\1:O

(9:132

oL

M=—— = M1l —29)=0
18)\1 1( T2)
gives solution 7 = —1/2, x5 = 1, Ay = 3/2 which satisfies the

constraints, and F' = 0.75

RN

wwn
TRy

Figure 2.15: Simple example
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Code to generate Figure 2.12

%
% 16.323 Spr 2008
% Plot of cost ftns and constraints

clear all;close all;
set (0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)
set (0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

© 0w N e U A W N e

global g G £
11 F=[1;g=[0;0];G=[1 1;1 2];

13 testcase=0
14 if testcase

15 f=inline (’ (1*(x1+1) .7 3-1x(x1+1) . 2+1*(x1+1)+2)’);
16 dfdx=inline (’ (3*1*(x1+1) .7 2-2*¢1*(x1+1)+1)’);

17 else

18 f=inline (’ (1*(x1-2) .7 3-1*(x1-2) . 2+1*(x1-2)+2)’);
19 dfdx=inline (’ (3*1*(x1-2).72-2%1x(x1-2)+1)’);

20 end

22 x1=-3:.01:5;x2=-4:.01:4;
23 for ii=1:length(x1);

24 for jj=1:length(x2);

25 X=[x1(ii) x2(ij1’;

26 F(ii,jj)=g’*X+X’*GxX/2;
27 end;

28 end;

20  figure(1);clf
30 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .29 .4 .5 1:1:max(max(F))]);
31 xlabel(’x_1’ )
32 ylabel(’x_2’ )

33 hold on;
34 plot(xl,f(x1),’LineWidth’,2);
35

s6 % X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)
37  xx=fmincon(’meshf’, [0;0],[1,[],01,0],0],[], ’meshc’);
38  hold on

39 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)

40 axis([-3 5 -4 4]);

41

42 Jx=[1;

43 [kk,II1]=min(abs(x1-xx(1)))

44 [kk,II2]=min(abs(x1-1.1%xx(1)))

45 [kk,II3]=min(abs(x1-0.9*%xx(1)))

46 11=[II1 II2 II3];

47  gam=.8; Y line scaling

48  for ii=1:length(1l)

49 X=[x1(11(ii));£(x1(11(ii)))]

50 Jx(ii, :)=(g+G*X)’;

51 X2=X+Jx(ii,:) ’*gam/norm(Jx(ii,:));

52

53 Nx1=X(1);

54 df=[-dfdx(Nx1);1]; %h x_2=f(x_1) ==> x_2 - f(x_1) < =0
56 X3=[Nx1;f(Nx1)];

57 X4=X3+df*gam/norm(df) ;

58

59 plot(X2(1),X2(2),’ko’,’MarkerSize’,12)

60 plot(X(1),X(2),’ks’, ’MarkerSize’,12)

61 plot ([X(1);X2(1)],[X(2);X2(2)], k-, ’LineWidth’,2)

62 plot(X4(1),X4(2),’ro’, ’MarkerSize’,12)

63 plot(X3(1),X3(2),’rs’, ’MarkerSize’,12)

64 plot ([X4(1);X3(1)],[X4(2);X3(2)],’r-’, ’LineWidth’,2)

65 if ii==1;

66 text ([1.25%X2(1)1, [X2(2)],’\partial F/\partial y’ )
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67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119

text ([X4(1)-.75], [0xX4(2)],’\partial f/\partial y’ )
end
end
hold off

ToloTotoTotototototototo oo oo oot toofototo

f2=inline(’-1%x1-1’);global f2
df2dx=inline(’-1*ones(size(x))’);

figure(3) ;gam=2;
contour(x1,x2,F’, [min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]);
xlabel(’x_1’ );ylabel(’x_2’ )

xx=fmincon(’meshf’, [0;01,(1,[1,01,01,0],[], meshc2’);
hold on

Jx=(g+G*xx)’;

X2=xx+Jx’*gam/norm(Jx) ;

plot (xx(1),xx(2), ’m*’, ’MarkerSize’,12)
plot(X2(1),X2(2),’mo’, ’MarkerSize’,12);

plot ([xx(1);X2(1)], [xx(2);X2(2)],’m-’, ’LineWidth’,2)
text ([X2(1)], [X2(2)],’\partial F/\partial y’)

hold off

hold on;
plot(x1,f(x1),’LineWidth’,2);
text(-1,1,’f_2 > 0°)
text(-2.5,0,’f_2 < 0’)
plot(x1,f2(x1),’k-’,’LineWidth’,2);
text(3,2,’f_1 < 0?)
if testcase

text(0,3,°f_1 > 0?)
else

text(1,3,°f_1 > 0?)
end

dd=[xx(1) 0 xx(1)]’;

X=[dd f(dd)];

df=[-dfdx(dd) 1*ones(size(dd))];

X2=X+gam*df/norm(df) ;

for ii=3
plot ([X(ii,1);X2(ii, 1)1, [X(ii,2);X2(ii,2)], LineWidth’,2)
text ([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’)

end

X=[dd f2(dd)];

df2=[-df2dx(dd) 1*ones(size(dd))];

X2=X+gam*df2/norm(df2) ;

%for ii=1:length(X)

for ii=1
plot ([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],°k’, ’LineWidth’,2)
text ([X2(ii,1)], [X2(ii,2)],’\partial f/\partial y’)

end

hold off

Tl oo o 16161 ToTo oo o o o oo oo

f2=inline(’-1*x1+1’);global f2
df2dx=inline(’-1*ones(size(x))’);

figure(4);clf;gam=2;
contour(x1,x2,F’, [min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]);
xlabel(’x_17);ylabel(’x_27)

xx=fmincon(’meshf’, [1;-1]1,01,01,0,0,0,[, meshc2’);
hold on

Jx=(g+G*xx)’;

X2=xx+Jx’*gam/norm(Jx) ;

plot (xx(1),xx(2),’m*’,’MarkerSize’,12)
plot(X2(1),X2(2), ’mo’, ’MarkerSize’,12);

plot ([xx(1);X2(1)], [xx(2);X2(2)], ’m-, ’LineWidth’,2)
text ([X2(1)], [X2(2)],’\partial F/\partial y’)

hold off
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152

154

155

157

181

hold on;
plot(x1,f(x1),’LineWidth’,2);
text(-1,3,’f_2 > 0°)
text(-2.5,2,’f_2 < 0?)
plot(x1,f2(x1),’k-’,’LineWidth’,2);
text(3,2,’f_1 < 0’)
if testcase

text(0,3,°f_1 > 0?)
else

text(1,3,°f_1 > 0?)
end

dd=[xx(1) 0 xx(1)]’;

X=[dd f(dd)];

df=[-dfdx(dd) 1*ones(size(dd))];

X2=X+gam*df /norm(df) ;

for ii=3
plot ([X(ii,1);X2(ii, 1)1, [X(ii,2);X2(ii,2)], LineWidth’,2)
text ([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’)

end

X=[dd f2(dd)];

df2=[-df2dx(dd) 1*ones(size(dd))];

X2=X+gam*df2/norm(df2) ;

%for ii=1:length(X)

for ii=1
plot ([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],°k’, ’LineWidth’,2)
text ([X2(ii,1)], [X2(ii,2)],’\partial f/\partial y’)

end

hold off

Tl oo to oo toToToTo o o o o o oo o Fo oo

if testcase
figure(1)
print -r300 -dpng meshilb.png;%jpdf (’meshib’);
axis([-4 0 -1 3]);
print -r300 -dpng meshic.png;%jpdf (’meshlic’);

figure(3)

print -r300 -dpng mesh2.png;’%jpdf (’mesh2’);

figure(4)

print -r300 -dpng mesh2a.png;%jpdf (’mesh2a’);
else

figure(1)

print -r300 -dpng meshl.png;’%jpdf (’meshl’);
axis([-.5 4 -2 2]);
print -r300 -dpng meshla.png;%jpdf (’meshla’);

figure(3)
print -r300 -dpng mesh4.png;’%jpdf (’mesh4’);
figure(4)
print -r300 -dpng mesh4a.png;%jpdf (’mesh4a’);
end
h

% sensitivity study

% line given by x_2=f(x_1), and the constraint is that x_2-f(x_1) <= 0

% changes are made to the constraint so that x_2-f(x_1) <= alp > 0
figure(5);clf

contour(x1,x2,F’, [min(min(F)) .05 .1 .213 .29 .4 .6:.5:max(max(F))]);

xlabel(’x_1)

ylabel(’x_27)

hold on;

f=inline (°’ (1*(x1-2).73-1%(x1-2) . 2+1%(x1-2)+2)’);
dfdx=inline (’ (3*1*(x1-2) .7 2-2%1%(x1-2)+1)’);
plot(x1,f(x1),’k-’, ’LineWidth’,2);

alp=1;

plot(x1,f(x1)+alp,’k--’,’LineWidth’,2);

global alp

[xx1,temp,temp,temp,laml]=fmincon(’meshf’, [0;0]1,[],[1,[1,[],[],[], meshc3’);

alp=0;

[xx0,temp, temp, temp,lam0] =fmincon(’meshf’, [0;01,[1,[1,[1,[1,01,[], meshec3’);
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[meshf (xx0) lam0.ineqnonlin;meshf(xx1) laml.inegnonlin]

legend(°F’, [’const=0, F~*=’ num2str(meshf(xx0))],[’const = 1, F %=’ ,num2str(meshf (xx1))])

hold on

plot (xx0(1),xx0(2),’mo’, ’MarkerSize’,12, ’MarkerFaceColor’,’m
plot(xx1(1),xx1(2),’md’, ’MarkerSize’,12, ’MarkerFaceColor’,’m’)

text (xx0(1)+.5,xx0(2),[’\lambda_0 = ’,num2str(lam0.inegnonlin)])

axis([0 2.5 -1 .5])

print -r300 -dpng mesh5;%jpdf (’mesh5’) ;

16.323 2-22

N

N o o

function F=meshf (X);
global g G
F=g’ *X+X’*G*X/2;

end

© W N e U A W N e

function [c,ceql=meshc(X);
global f

c=[1;

%hceq=f (X(1))-X(2);
ceq=X(2)-f(X(1));

return

© W N e U A W N e

function [c,ceql=meshc(X);
global f f2
he=[£(X(1))-X(2);£2(X(1))-X(2)1;
c=[X(2)-f(X(1));X(2)-f2(X(1))];
ceq=[1;

return
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Code for Simple Constrained Example

© 0w N e U A W N e

figure(1),clf

xx=[-3:.1:3]’; for ii=1:length(xx);for jj=1:length(xx); %
FF(ii,jj)= xx(ii)"2+xx(ii)*xx(jj)+xx(jj)"2;end;end;%
hh=mesh (xx,xx,FF) ;%

hold on;%

plot3(xx,ones(size(xx)),xx. 2+1+xx,’m-’, ’LineWidth’,2) ;%
plot3(xx,3-xx,xx. 2+(3-xx) . 2+xx.*(3-xx),’g-’, ’LineWidth’,2) ;%

xlabel(’x_1’); ylabel(’x_2’); %

hold off; axis([-3 3 -3 3 0 201)%

hh=get (gcf,’children’) ;%

set (hh,’View’, [-109 74],’CameraPosition’,[-26.5555 13.5307 151.881]);%

xx=fmincon(’simplecaseF’,[0;0],[],0],01,[1,0],[],’simplecaseC’);
hold on

plot3(xx(1),xx(2),xx(1) . 2+xx(2) . "2+xx (1) .*xx(2),’rs’,’MarkerSize’,20, ’MarkerFace’, ’r’)

xx(1) .7 2+xx(2) . "2+xx (1) . *xx(2)

print -r300 -dpng simplecase.png;

oA W N e

function F=simplecaseF(X);
F=X(1) "2+X (1) *X(2)+X(2) ~2;

return

NS N Ve

function [c,ceql=simplecaseC(X);

c=[1-X(2) ;X(1)+X(2)-3];
ceq=0;

return
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