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16.323 Lecture 1 

Nonlinear Optimization 

•	 Unconstrained nonlinear optimization 

Line search methods • 

Figure by MIT OpenCourseWare.
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Basics – Unconstrained


•	 Typical objective is to minimize a nonlinear function F (x) of the 
parameters x. 

– Assume that F (x) is scalar x� = arg minx F (x)⇒ 

•	 Define two types of minima: 

– Strong: objective function increases locally in all directions 

A point x� is a strong minimum of a function F (x) if a scalar δ > 0 
exists such that F (x�) < F (x� + Δx) for all Δx such that 0 < 
�Δx� ≤ δ 

– Weak: objective function remains same in some directions, and 
increases locally in other directions 

Point x� is a weak minimum of a function F (x) if is not a strong 
minimum and a scalar δ > 0 exists such that F (x�) ≤ F (x� + Δx) 
for all Δx such that 0 < �Δx� ≤ δ 

•	 Note that a minimum is a unique global minimum if the definitions 
hold for δ = ∞. Otherwise these are local minima. 
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Figure 1.1: F (x) = x4 − 2x2 + x + 3 with local and global minima 
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First Order Conditions


•	 If F (x) has continuous second derivatives, can approximate function 
in the neighborhood of an arbitrary point using Taylor series: 

F (x + Δx) ≈ F (x) + Δx T g(x) + 
1
Δx TG(x)Δx + . . . 

2 

⎡ 
where g ∼ gradient of F and G ∼ second derivative of F 

∂2F ∂2F 
⎤⎡ ⎤
⎤
⎡
 �T 

∂F

∂x2

1 
· · · ∂x1∂xnx1
 ⎥⎦
, G =


⎢⎢⎣

⎥⎥⎦


∂x1∂F
 ⎢⎣
...⎣ ⎦
 ...
 .	 .. . . . ..x =
 , g = =
 .

∂x


∂2F ∂2F∂F 
∂xn ∂xn∂x1 

· · · 
∂x2 

n 
xn


•	 First-order condition from first two terms (assume �Δx� � 1) 

– Given ambiguity of sign of the term ΔxT g(x), can only avoid 
cost decrease F (x + Δx) < F (x) if g(x�) = 0 
⇒	Obtain further information from higher derivatives 

– g(x�) = 0 is a necessary and sufficient condition for a point to be 
a stationary point – a necessary, but not sufficient condition to 
be a minima. 

– Stationary point could also be a maximum or a saddle point. 
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•	 Additional conditions can be derived from the Taylor expansion if we 
set g(x�) = 0, in which case:


1

F (x � + Δx) ≈ F (x �) + Δx TG(x �)Δx + . . . 

2 

– For a strong minimum, need ΔxTG(x�)Δx > 0 for all Δx, which 
is sufficient to ensure that F (x� + Δx) > F (x�). 

– To be true for arbitrary Δx = 0, sufficient condition is that 
G(x�) > 0 (PD). 1 

•	 Second order necessary condition for a strong minimum is that 
G(x�) ≥ 0 (PSD), because in this case the higher order terms in 
the expansion can play an important role, i.e. 

Δx TG(x �)Δx = 0 

but the third term in the Taylor series expansion is positive. 

•	 Summary: require g(x�) = 0 and G(x�) > 0 (sufficient) 
or G(x�) ≥ 0 (necessary) 

1Positive Definite Matrix 
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Solution Methods 

•	 Typically solve minimization problem using an iterative algorithm. 

– Given: An initial estimate of the optimizing value of x x̂k and⇒ 
a search direction pk 

– Find: x̂k+1 = x̂k + αkpk, for some scalar αk = 0 

•	 Sounds good, but there are some questions: 

– How find pk? 

– How find αk ? “line search” ⇒ 

– How find initial condition x0, and how sensitive is the answer to 
the choice? 

Search direction: • 

– Taylor series expansion of F (x) about current estimate x̂k 

∂F 
Fk+1 ≡ F (x̂k + αpk) ≈	 F (x̂k) + (x̂k+1 − x̂k)

∂x 
= Fk + gk

T (αkpk) 

� Assume that αk > 0, and to ensure function decreases 
(i.e.	Fk+1 < Fk), set


gk
T pk < 0


� pk’s that satisfy this property provide a descent direction 

– Steepest descent given by pk = −gk 

•	 Summary: gradient search methods (first-order methods) using es­
timate updates of the form: 

x̂k+1 = x̂k − αkgk 
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Line Search 

• Line Search - given a search direction, must decide how far to “step” 

– Expression xk+1 = xk + αkpk gives a new solution for all possible 
values of α - what is the right value to pick? 

– Note that pk defines a slice through solution space – is a very spe­

cific combination of how the elements of x will change together. 

• Would like to pick αk to minimize F (xk + αkpk) 

– Can do this line search in gory detail, but that would be very time 
consuming 

� Often want this process to be fast, accurate, and easy 

� Especially if you are not that confident in the choice of pk 

• Consider simple problem: F (x1, x2) = x1
2 + x1x2 + x2

2 with 

1 0 1 
x0 = p0 = x1 = x0 + αp0 = 

1 2 
⇒ 

1 + 2α 

which gives that F = 1 + (1 + 2α) + (1 + 2α)2 so that 

∂F 
= 2 + 2(1 + 2α)(2) = 0 

∂α


with solution α� = −3/4 and x1 = [1 − 1/2]T


– This is hard to generalize this to N-space – need a better approach 
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Spr 2008 16.323 1–6


Figure 1.2: F (x) = x1
2 + x1x2 + x2

2 doing a line search in arbitrary direction 
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Line Search – II 

•	 First step: search along the line until you think you have bracketed a 
“local minimum” 

Figure 1.3: Line search process 

Once you think you have a bracket of the local min – what is the 
smallest number of function evaluations that can be made to reduce 
the size of the bracket? 

– Many ways to do this: 

�	Golden Section Search 

�	Bisection 

�	Polynomial approximations 

– First 2 have linear convergence, last one has “superlinear” 

Polynomial approximation approach 

– Approximate function as quadratic/cubic in the interval and use 
the minimum of that polynomial as the estimate of the local min. 

– Use with care since it can go very wrong – but it is a good termi­

nation approach. 

•	

•	
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Cubic fits are a favorite: • 

F	̂(x) = px 3 + qx 2 + rx + s 

ĝ(x) = 3px 2 + 2qx + r ( = 0 at min) 

Then x� is the point (pick one) x� = (−q ± (q2 − 3pr)1/2)/(3p) for 
which Ĝ(x�) = 6px� + 2q > 0 

•	 Great, but how do we find x� in terms of what we know (F (x) and 
g(x) at the end of the bracket [a, b])? 

x� = a + (b − a) 1 − 
g

g

b

b 

− 
+ 
g

v

a 

− 
+ 2

w

v 

where � 3 
v = w2 − gagb and w = 

b − a 
(Fa − Fb) + ga + gb 

Figure 1.4: Cubic line search [Scales, pg. 40] 
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Observations:• 

– Tends to work well “near” a function local minimum (good con­

vergence behavior) 

– But can be very poor “far away” use a hybrid approach of ⇒ 
bisection followed by cubic. 

•	 Rule of thumb: do not bother making the linear search too accu­

rate, especially at the beginning 

– A waste of time and effort 

– Check the min tolerance – and reduce it as it you think you are 
approaching the overall solution. 

Figure 1.5: zig-zag typical of steepest decent line searches 
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Second Order Methods 

•	 Second order methods typically provide faster termination 

– Assume F is quadratic, and expand gradient gk+1 at x̂k+1 

gk+1 ≡ g(x̂k + pk) = gk + Gk(x̂k+1 − x̂k) 

= gk + Gkpk 

where there are no other terms because of the assumption that F 
is quadratic and 

= ⎣ 
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 �T 
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 ∂x1∂F
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 ∂xn x̂k⎤⎡ 
∂2F ∂2F 
∂x2

1 
· · · ∂x1∂xn 

.	 .. . . . .. 
⎢⎢⎣ = 

– So for x̂k+1 to be at the minimum, need gk+1 = 0, so that 

pk	 = −G−1 gkk 

•	 Problem is that F (x) typically not quadratic, so the solution x̂k+1 is 
not at the minimum need to iterate ⇒ 

•	 Note that for a complicated F (x), we may not have explicit gradients 
(should always compute them if you can) 

– But can always approximate them using finite difference tech­

niques – but pretty expensive to find G that way 

– Use Quasi-Newton approximation methods instead, such as BFGS 
(Broyden-Fletcher-Goldfarb-Shanno) 
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FMINUNC Example 

Function minimization without constraints • 

– Does quasi-Newton and gradient search 

– No gradients need to be formed 

– Mixture of cubic and quadratic line searches 

•	 Performance shown on a complex function by Rosenbrock 

F (x1, x2) = 100(x1
2 − x2)

2 + (1 − x1)
2 

– Start at x = [−1.9 2]. Known global min it is at x = [1 1] 

Rosenbrock with BFGS
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Figure 1.6: How well do the algorithms work?


•	 Quasi-Newton (BFGS) does well - gets to optimal solution in 26 
iterations (35 ftn calls), but gradient search (steepest descent) fails 
(very close though), even after 2000 function calls (550 iterations). 
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Rosenbrock with BFGS
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Observations: • 

1. Typically not a good idea to start the optimization with QN, and 
I often find that it is better to do GS for 100 iterations, and then 
switch over to QN for the termination phase. 

2. x̂0 tends to be very important – standard process is to try many 
different cases to see if you can find consistency in the answers. 
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Figure 1.7: Shows how the point of convergence changes as a function of the initial 
condition. 

3. Typically the convergence is to a local minimum and can be slow 

4. Are there	 any guarantees on getting a good final answer in a 
reasonable amount of time? Typically yes, but not always. 
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Unconstrained Optimization Code


function [F,G]=rosen(x)

%global xpath


%F=100*(x(1)^2-x(2))^2+(1-x(1))^2; 

if size(x,1)==2, x=x’; end 

F=100*(x(:,2)-x(:,1).^2).^2+(1-x(:,1)).^2;

G=[100*(4*x(1)^3-4*x(1)*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1)^2)];


return 

%

% Main calling part below - uses function above

%


global xpath 

clear FF

x1=[-3:.1:3]’; x2=x1; N=length(x1);

for ii=1:N,


for jj=1:N,

FF(ii,jj)=rosen([x1(ii) x2(jj)]’);


end,

end


% quasi-newton

%

xpath=[];t0=clock;

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’bfgs’,’gradobj’,’on’,’Display’,’Iter’,...


’LargeScale’,’off’,’InitialHessType’,’identity’,...

’MaxFunEvals’,150,’OutputFcn’, @outftn);


x0=[-1.9 2]’; 

xout1=fminunc(’rosen’,x0,opt) % quasi-newton

xbfgs=xpath;


% gradient search

%

xpath=[];

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’steepdesc’,’gradobj’,’on’,’Display’,’Iter’,...


’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,2000,’MaxIter’,1000,’OutputFcn’, @outftn); 
xout=fminunc(’rosen’,x0,opt) 
xgs=xpath; 

% hybrid GS and BFGS

%

xpath=[];

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’steepdesc’,’gradobj’,’on’,’Display’,’Iter’,...


’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,5,’OutputFcn’, @outftn);

xout=fminunc(’rosen’,x0,opt)

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’bfgs’,’gradobj’,’on’,’Display’,’Iter’,...


’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,150,’OutputFcn’, @outftn);

xout=fminunc(’rosen’,xout,opt)


xhyb=xpath; 

figure(1);clf

contour(x1,x2,FF’,[0:2:10 15:50:1000])

hold on

plot(x0(1),x0(2),’ro’,’Markersize’,12)
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68 plot(1,1,’rs’,’Markersize’,12)

69 plot(xbfgs(:,1),xbfgs(:,2),’bd’,’Markersize’,12)

70 title(’Rosenbrock with BFGS’)

71 hold off

72 xlabel(’x_1’)

73 ylabel(’x_2’)

74 print -depsc rosen1a.eps;jpdf(’rosen1a’)

75


76 figure(2);clf

77 contour(x1,x2,FF’,[0:2:10 15:50:1000])

78 hold on

79 xlabel(’x_1’)

80 ylabel(’x_2’)

81 plot(x0(1),x0(2),’ro’,’Markersize’,12)

82 plot(1,1,’rs’,’Markersize’,12)

83 plot(xgs(:,1),xgs(:,2),’m+’,’Markersize’,12)

84 title(’Rosenbrock with GS’)

85 hold off

86 print -depsc rosen1b.eps;jpdf(’rosen1b’)

87


88 figure(3);clf

89 contour(x1,x2,FF’,[0:2:10 15:50:1000])

90 hold on

91 xlabel(’x_1’)

92 ylabel(’x_2’)

93 plot(x0(1),x0(2),’ro’,’Markersize’,12)

94 plot(1,1,’rs’,’Markersize’,12)

95 plot(xhyb(:,1),xhyb(:,2),’m+’,’Markersize’,12)

96 title(’Rosenbrock with GS(5) and BFGS’)

97 hold off

98 print -depsc rosen1c.eps;jpdf(’rosen1c’)

99


100 figure(4);clf 
101 mesh(x1,x2,FF’) 
102 hold on 
103 plot3(x0(1),x0(2),rosen(x0’)+5,’ro’,’Markersize’,12,’MarkerFaceColor’,’r’) 
104 plot3(1,1,rosen([1 1]),’ms’,’Markersize’,12,’MarkerFaceColor’,’m’) 
105 plot3(xbfgs(:,1),xbfgs(:,2),rosen(xbfgs)+5,’gd’,’MarkerFaceColor’,’g’) 
106 %plot3(xgs(:,1),xgs(:,2),rosen(xgs)+5,’m+’) 
107 hold off 
108 axis([-3 3 -3 3 0 1000]) 
109 hh=get(gcf,’children’); 
110 xlabel(’x_1’) 
111 ylabel(’x_2’) 
112 set(hh,’View’,[-177 89.861],’CameraPosition’,[-0.585976 11.1811 5116.63]);% 
113 print -depsc rosen2.eps;jpdf(’rosen2’) 
114 

1 function stop = outftn(x, optimValues, state) 
2 

3 global xpath 
4 stop=0; 
5 xpath=[xpath;x’]; 
6 

7 return 
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