
MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

16.323 Lecture 1

Nonlinear Optimization

•	 Unconstrained nonlinear optimization

Line search methods •

Figure by MIT OpenCourseWare.

Spr 2008	 16.323 1–1
Basics – Unconstrained

•	 Typical objective is to minimize a nonlinear function F (x) of the
parameters x.

– Assume that F (x) is scalar x� = arg minx F (x)⇒

•	 Define two types of minima:

– Strong: objective function increases locally in all directions

A point x� is a strong minimum of a function F (x) if a scalar δ > 0
exists such that F (x�) < F (x� + Δx) for all Δx such that 0 <
�Δx� ≤ δ

– Weak: objective function remains same in some directions, and
increases locally in other directions

Point x� is a weak minimum of a function F (x) if is not a strong
minimum and a scalar δ > 0 exists such that F (x�) ≤ F (x� + Δx)
for all Δx such that 0 < �Δx� ≤ δ

•	 Note that a minimum is a unique global minimum if the definitions
hold for δ = ∞. Otherwise these are local minima.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

x

F(
x)

Figure 1.1: F (x) = x4 − 2x2 + x + 3 with local and global minima

June 18, 2008

�

Spr 2008	 16.323 1–2
First Order Conditions

•	 If F (x) has continuous second derivatives, can approximate function
in the neighborhood of an arbitrary point using Taylor series:

F (x + Δx) ≈ F (x) + Δx T g(x) +
1
Δx TG(x)Δx + . . .

2

⎡
where g ∼ gradient of F and G ∼ second derivative of F

∂2F ∂2F
⎤⎡ ⎤
⎤
⎡
 �T

∂F

∂x2

1
· · · ∂x1∂xnx1
 ⎥⎦
, G =

⎢⎢⎣

⎥⎥⎦

∂x1∂F
 ⎢⎣
...⎣ ⎦
 ...
x =
 , g = =
 .

∂x

∂2F ∂2F∂F
∂xn ∂xn∂x1

· · ·
∂x2

n
xn

•	 First-order condition from first two terms (assume �Δx� � 1)

– Given ambiguity of sign of the term ΔxT g(x), can only avoid
cost decrease F (x + Δx) < F (x) if g(x�) = 0
⇒	Obtain further information from higher derivatives

– g(x�) = 0 is a necessary and sufficient condition for a point to be
a stationary point – a necessary, but not sufficient condition to
be a minima.

– Stationary point could also be a maximum or a saddle point.

June 18, 2008

�

Spr 2008	 16.323 1–3

•	 Additional conditions can be derived from the Taylor expansion if we
set g(x�) = 0, in which case:

1

F (x � + Δx) ≈ F (x �) + Δx TG(x �)Δx + . . .

2

– For a strong minimum, need ΔxTG(x�)Δx > 0 for all Δx, which
is sufficient to ensure that F (x� + Δx) > F (x�).

– To be true for arbitrary Δx = 0, sufficient condition is that
G(x�) > 0 (PD). 1

•	 Second order necessary condition for a strong minimum is that
G(x�) ≥ 0 (PSD), because in this case the higher order terms in
the expansion can play an important role, i.e.

Δx TG(x �)Δx = 0

but the third term in the Taylor series expansion is positive.

•	 Summary: require g(x�) = 0 and G(x�) > 0 (sufficient)
or G(x�) ≥ 0 (necessary)

1Positive Definite Matrix

June 18, 2008

http://mathworld.wolfram.com/PositiveDefiniteMatrix.html

�

Spr 2008	 16.323 1–4
Solution Methods

•	 Typically solve minimization problem using an iterative algorithm.

– Given: An initial estimate of the optimizing value of x x̂k and⇒
a search direction pk

– Find: x̂k+1 = x̂k + αkpk, for some scalar αk = 0

•	 Sounds good, but there are some questions:

– How find pk?

– How find αk ? “line search” ⇒

– How find initial condition x0, and how sensitive is the answer to
the choice?

Search direction: •

– Taylor series expansion of F (x) about current estimate x̂k

∂F
Fk+1 ≡ F (x̂k + αpk) ≈	 F (x̂k) + (x̂k+1 − x̂k)

∂x
= Fk + gk

T (αkpk)

� Assume that αk > 0, and to ensure function decreases
(i.e.	Fk+1 < Fk), set

gk
T pk < 0

� pk’s that satisfy this property provide a descent direction

– Steepest descent given by pk = −gk

•	 Summary: gradient search methods (first-order methods) using es­
timate updates of the form:

x̂k+1 = x̂k − αkgk

June 18, 2008

� � � � � �

Spr 2008 16.323 1–5
Line Search

• Line Search - given a search direction, must decide how far to “step”

– Expression xk+1 = xk + αkpk gives a new solution for all possible
values of α - what is the right value to pick?

– Note that pk defines a slice through solution space – is a very spe­

cific combination of how the elements of x will change together.

• Would like to pick αk to minimize F (xk + αkpk)

– Can do this line search in gory detail, but that would be very time
consuming

� Often want this process to be fast, accurate, and easy

� Especially if you are not that confident in the choice of pk

• Consider simple problem: F (x1, x2) = x1
2 + x1x2 + x2

2 with

1 0 1
x0 = p0 = x1 = x0 + αp0 =

1 2
⇒

1 + 2α

which gives that F = 1 + (1 + 2α) + (1 + 2α)2 so that

∂F
= 2 + 2(1 + 2α)(2) = 0

∂α

with solution α� = −3/4 and x1 = [1 − 1/2]T

– This is hard to generalize this to N-space – need a better approach

June 18, 2008

Spr 2008 16.323 1–6

Figure 1.2: F (x) = x1
2 + x1x2 + x2

2 doing a line search in arbitrary direction

June 18, 2008

Spr 2008	 16.323 1–7

Line Search – II

•	 First step: search along the line until you think you have bracketed a
“local minimum”

Figure 1.3: Line search process

Once you think you have a bracket of the local min – what is the
smallest number of function evaluations that can be made to reduce
the size of the bracket?

– Many ways to do this:

�	Golden Section Search

�	Bisection

�	Polynomial approximations

– First 2 have linear convergence, last one has “superlinear”

Polynomial approximation approach

– Approximate function as quadratic/cubic in the interval and use
the minimum of that polynomial as the estimate of the local min.

– Use with care since it can go very wrong – but it is a good termi­

nation approach.

•	

•	

June 18, 2008

F(x)

a2 a3

a5

b1
b2

b3
b4
b5

a4

a1

8∆4∆2∆∆

x

Line Search Process

Figure by MIT OpenCourseWare.

�	 �

Spr 2008	 16.323 1–8

Cubic fits are a favorite: •

F	̂(x) = px 3 + qx 2 + rx + s

ĝ(x) = 3px 2 + 2qx + r (= 0 at min)

Then x� is the point (pick one) x� = (−q ± (q2 − 3pr)1/2)/(3p) for
which Ĝ(x�) = 6px� + 2q > 0

•	 Great, but how do we find x� in terms of what we know (F (x) and
g(x) at the end of the bracket [a, b])?

x� = a + (b − a) 1 −
g

g

b

b

−
+
g

v

a

−
+ 2

w

v

where � 3
v = w2 − gagb and w =

b − a
(Fa − Fb) + ga + gb

Figure 1.4: Cubic line search [Scales, pg. 40]

June 18, 2008

Content from: Scales, L. E. Introduction to Non-Linear Optimization. New York, NY: Springer, 1985, pp. 40.
Removed due to copyright restrictions.

Spr 2008	 16.323 1–9

Observations:•

– Tends to work well “near” a function local minimum (good con­

vergence behavior)

– But can be very poor “far away” use a hybrid approach of ⇒
bisection followed by cubic.

•	 Rule of thumb: do not bother making the linear search too accu­

rate, especially at the beginning

– A waste of time and effort

– Check the min tolerance – and reduce it as it you think you are
approaching the overall solution.

Figure 1.5: zig-zag typical of steepest decent line searches

June 18, 2008

Figure by MIT OpenCourseWare.

�

Spr 2008	 16.323 1–10
Second Order Methods

•	 Second order methods typically provide faster termination

– Assume F is quadratic, and expand gradient gk+1 at x̂k+1

gk+1 ≡ g(x̂k + pk) = gk + Gk(x̂k+1 − x̂k)

= gk + Gkpk

where there are no other terms because of the assumption that F
is quadratic and

= ⎣

⎤
⎡
⎤
⎡
 �T
∂F
x1
 ∂x1∂F
 ⎢⎣

⎥⎦
⎦
.. ..xk
 gk = =
.
 ,
 .

∂x ∂F
xn
 ∂xn x̂k⎤⎡
∂2F ∂2F
∂x2

1
· · · ∂x1∂xn

.	
⎢⎢⎣ =

– So for x̂k+1 to be at the minimum, need gk+1 = 0, so that

pk	 = −G−1 gkk

•	 Problem is that F (x) typically not quadratic, so the solution x̂k+1 is
not at the minimum need to iterate ⇒

•	 Note that for a complicated F (x), we may not have explicit gradients
(should always compute them if you can)

– But can always approximate them using finite difference tech­

niques – but pretty expensive to find G that way

– Use Quasi-Newton approximation methods instead, such as BFGS
(Broyden-Fletcher-Goldfarb-Shanno)

June 18, 2008

⎥⎥⎦
Gk
 .

∂2F ∂2F

∂xn∂x1 ∂x2
n

· · ·
x̂k

Spr 2008	 16.323 1–11
FMINUNC Example

Function minimization without constraints •

– Does quasi-Newton and gradient search

– No gradients need to be formed

– Mixture of cubic and quadratic line searches

•	 Performance shown on a complex function by Rosenbrock

F (x1, x2) = 100(x1
2 − x2)

2 + (1 − x1)
2

– Start at x = [−1.9 2]. Known global min it is at x = [1 1]

Rosenbrock with BFGS

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Rosenbrock with GS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Rosenbrock with GS(5) and BFGS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3−2−10123

−3

−2

−1

0

1

2

3

0

500

1000

x
2

x
1

Figure 1.6: How well do the algorithms work?

•	 Quasi-Newton (BFGS) does well - gets to optimal solution in 26
iterations (35 ftn calls), but gradient search (steepest descent) fails
(very close though), even after 2000 function calls (550 iterations).

June 18, 2008

Spr 2008 16.323 1–12

Rosenbrock with BFGS

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Rosenbrock with GS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

June 18, 2008

Spr 2008 16.323 1–13

x
1

x 2

Rosenbrock with GS(5) and BFGS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3−2−10123

−3

−2

−1

0

1

2

3

0

500

1000

x
2

x
1

June 18, 2008

Spr 2008	 16.323 1–14

Observations: •

1. Typically not a good idea to start the optimization with QN, and
I often find that it is better to do GS for 100 iterations, and then
switch over to QN for the termination phase.

2. x̂0 tends to be very important – standard process is to try many
different cases to see if you can find consistency in the answers.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

x

F(
x)

Figure 1.7: Shows how the point of convergence changes as a function of the initial
condition.

3. Typically the convergence is to a local minimum and can be slow

4. Are there	 any guarantees on getting a good final answer in a
reasonable amount of time? Typically yes, but not always.

June 18, 2008

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 1–15

Unconstrained Optimization Code

function [F,G]=rosen(x)

%global xpath

%F=100*(x(1)^2-x(2))^2+(1-x(1))^2;

if size(x,1)==2, x=x’; end

F=100*(x(:,2)-x(:,1).^2).^2+(1-x(:,1)).^2;

G=[100*(4*x(1)^3-4*x(1)*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1)^2)];

return

%

% Main calling part below - uses function above

%

global xpath

clear FF

x1=[-3:.1:3]’; x2=x1; N=length(x1);

for ii=1:N,

for jj=1:N,

FF(ii,jj)=rosen([x1(ii) x2(jj)]’);

end,

end

% quasi-newton

%

xpath=[];t0=clock;

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’bfgs’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,...

’MaxFunEvals’,150,’OutputFcn’, @outftn);

x0=[-1.9 2]’;

xout1=fminunc(’rosen’,x0,opt) % quasi-newton

xbfgs=xpath;

% gradient search

%

xpath=[];

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’steepdesc’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,2000,’MaxIter’,1000,’OutputFcn’, @outftn);
xout=fminunc(’rosen’,x0,opt)
xgs=xpath;

% hybrid GS and BFGS

%

xpath=[];

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’steepdesc’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,5,’OutputFcn’, @outftn);

xout=fminunc(’rosen’,x0,opt)

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’bfgs’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,150,’OutputFcn’, @outftn);

xout=fminunc(’rosen’,xout,opt)

xhyb=xpath;

figure(1);clf

contour(x1,x2,FF’,[0:2:10 15:50:1000])

hold on

plot(x0(1),x0(2),’ro’,’Markersize’,12)

June 18, 2008

Spr 2008 16.323 1–16

68 plot(1,1,’rs’,’Markersize’,12)

69 plot(xbfgs(:,1),xbfgs(:,2),’bd’,’Markersize’,12)

70 title(’Rosenbrock with BFGS’)

71 hold off

72 xlabel(’x_1’)

73 ylabel(’x_2’)

74 print -depsc rosen1a.eps;jpdf(’rosen1a’)

75

76 figure(2);clf

77 contour(x1,x2,FF’,[0:2:10 15:50:1000])

78 hold on

79 xlabel(’x_1’)

80 ylabel(’x_2’)

81 plot(x0(1),x0(2),’ro’,’Markersize’,12)

82 plot(1,1,’rs’,’Markersize’,12)

83 plot(xgs(:,1),xgs(:,2),’m+’,’Markersize’,12)

84 title(’Rosenbrock with GS’)

85 hold off

86 print -depsc rosen1b.eps;jpdf(’rosen1b’)

87

88 figure(3);clf

89 contour(x1,x2,FF’,[0:2:10 15:50:1000])

90 hold on

91 xlabel(’x_1’)

92 ylabel(’x_2’)

93 plot(x0(1),x0(2),’ro’,’Markersize’,12)

94 plot(1,1,’rs’,’Markersize’,12)

95 plot(xhyb(:,1),xhyb(:,2),’m+’,’Markersize’,12)

96 title(’Rosenbrock with GS(5) and BFGS’)

97 hold off

98 print -depsc rosen1c.eps;jpdf(’rosen1c’)

99

100 figure(4);clf
101 mesh(x1,x2,FF’)
102 hold on
103 plot3(x0(1),x0(2),rosen(x0’)+5,’ro’,’Markersize’,12,’MarkerFaceColor’,’r’)
104 plot3(1,1,rosen([1 1]),’ms’,’Markersize’,12,’MarkerFaceColor’,’m’)
105 plot3(xbfgs(:,1),xbfgs(:,2),rosen(xbfgs)+5,’gd’,’MarkerFaceColor’,’g’)
106 %plot3(xgs(:,1),xgs(:,2),rosen(xgs)+5,’m+’)
107 hold off
108 axis([-3 3 -3 3 0 1000])
109 hh=get(gcf,’children’);
110 xlabel(’x_1’)
111 ylabel(’x_2’)
112 set(hh,’View’,[-177 89.861],’CameraPosition’,[-0.585976 11.1811 5116.63]);%
113 print -depsc rosen2.eps;jpdf(’rosen2’)
114

1 function stop = outftn(x, optimValues, state)
2

3 global xpath
4 stop=0;
5 xpath=[xpath;x’];
6

7 return

June 18, 2008

	16.323 4.pdf
	16.323 5.pdf
	16.323 6.pdf
	16.323 7.pdf
	16.323 8.pdf
	16.323 9.pdf
	16.323 10.pdf
	16.323 11.pdf
	16.323 12.pdf
	16.323 13.pdf
	16.323 14.pdf
	16.323 15.pdf
	16.323 16.pdf
	16.323 17.pdf
	16.323 18.pdf
	16.323 19.pdf
	16.323 20.pdf

