16.323 Principles of Optimal Control Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

16.323 Lecture 1

Nonlinear Optimization

- Unconstrained nonlinear optimization
- Line search methods

Figure by MIT OpenCourseWare.

Basics – Unconstrained

• Typical objective is to minimize a nonlinear function $F(\mathbf{x})$ of the parameters \mathbf{x} .

- Assume that $F(\mathbf{x})$ is scalar $\Rightarrow \mathbf{x}^{\star} = \arg \min_{\mathbf{x}} F(\mathbf{x})$

• Define two types of minima:

- Strong: objective function increases locally in all directions

A point \mathbf{x}^* is a strong minimum of a function $F(\mathbf{x})$ if a scalar $\delta > 0$ exists such that $F(\mathbf{x}^*) < F(\mathbf{x}^* + \Delta \mathbf{x})$ for all $\Delta \mathbf{x}$ such that $0 < \|\Delta \mathbf{x}\| \le \delta$

- Weak: objective function remains same in some directions, and increases locally in other directions

Point \mathbf{x}^* is a weak minimum of a function $F(\mathbf{x})$ if is not a strong minimum and a scalar $\delta > 0$ exists such that $F(\mathbf{x}^*) \leq F(\mathbf{x}^* + \Delta \mathbf{x})$ for all $\Delta \mathbf{x}$ such that $0 < \|\Delta \mathbf{x}\| \leq \delta$

• Note that a minimum is a **unique global minimum** if the definitions hold for $\delta = \infty$. Otherwise these are **local** minima.

Figure 1.1: $F(x) = x^4 - 2x^2 + x + 3$ with local and global minima

First Order Conditions

• If $F(\mathbf{x})$ has continuous second derivatives, can approximate function in the neighborhood of an arbitrary point using Taylor series:

$$F(\mathbf{x} + \Delta \mathbf{x}) \approx F(\mathbf{x}) + \Delta \mathbf{x}^T \mathbf{g}(\mathbf{x}) + \frac{1}{2} \Delta \mathbf{x}^T G(\mathbf{x}) \Delta \mathbf{x} + \dots$$

where $\mathbf{g} \sim \mathbf{g}$ radient of F and $G \sim \mathbf{second}$ derivative of F

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{g} = \left(\frac{\partial F}{\partial \mathbf{x}}\right)^T = \begin{bmatrix} \frac{\partial F}{\partial x_1} \\ \vdots \\ \frac{\partial F}{\partial x_n} \end{bmatrix}, G = \begin{bmatrix} \frac{\partial^2 F}{\partial x_1^2} & \cdots & \frac{\partial^2 F}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 F}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 F}{\partial x_n^2} \end{bmatrix}$$

- First-order condition from first two terms (assume $\|\Delta \mathbf{x}\| \ll 1$)
 - Given **ambiguity of sign** of the term $\Delta \mathbf{x}^T \mathbf{g}(\mathbf{x})$, can only avoid cost decrease $F(\mathbf{x} + \Delta \mathbf{x}) < F(\mathbf{x})$ if $\mathbf{g}(\mathbf{x}^*) = 0$ \Rightarrow Obtain further information from higher derivatives
 - $-\mathbf{g}(\mathbf{x}^{\star}) = 0$ is a necessary and sufficient condition for a point to be a **stationary point** a necessary, but not sufficient condition to be a minima.
 - Stationary point could also be a maximum or a saddle point.

Additional conditions can be derived from the Taylor expansion if we set g(x^{*}) = 0, in which case:

$$F(\mathbf{x}^{\star} + \Delta \mathbf{x}) \approx F(\mathbf{x}^{\star}) + \frac{1}{2} \Delta \mathbf{x}^{T} G(\mathbf{x}^{\star}) \Delta \mathbf{x} + \dots$$

- For a strong minimum, need $\Delta \mathbf{x}^T G(\mathbf{x}^*) \Delta \mathbf{x} > 0$ for all $\Delta \mathbf{x}$, which is sufficient to ensure that $F(\mathbf{x}^* + \Delta \mathbf{x}) > F(\mathbf{x}^*)$.
- To be true for arbitrary $\Delta \mathbf{x} \neq 0$, sufficient condition is that $G(\mathbf{x}^{\star}) > 0$ (PD).¹
- Second order **necessary** condition for a strong minimum is that $G(\mathbf{x}^{\star}) \geq 0$ (PSD), because in this case the higher order terms in the expansion can play an important role, i.e.

$$\Delta \mathbf{x}^T G(\mathbf{x}^\star) \Delta \mathbf{x} = 0$$

but the third term in the Taylor series expansion is positive.

Summary: require g(x^{*}) = 0 and G(x^{*}) > 0 (sufficient) or G(x^{*}) ≥ 0 (necessary)

¹Positive Definite Matrix

- Typically solve minimization problem using an iterative algorithm.
 - Given: An initial estimate of the optimizing value of $\mathbf{x} \Rightarrow \hat{\mathbf{x}}_k$ and a search direction \mathbf{p}_k
 - Find: $\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_k + \alpha_k \mathbf{p}_k$, for some scalar $\alpha_k \neq 0$
- Sounds good, but there are some questions:
 - How find \mathbf{p}_k ?
 - How find α_k ? \Rightarrow "line search"
 - How find initial condition \mathbf{x}_0 , and how sensitive is the answer to the choice?

• Search direction:

- Taylor series expansion of $F(\mathbf{x})$ about current estimate $\hat{\mathbf{x}}_k$

$$F_{k+1} \equiv F(\hat{\mathbf{x}}_k + \alpha \mathbf{p}_k) \approx F(\hat{\mathbf{x}}_k) + \frac{\partial F}{\partial \mathbf{x}}(\hat{\mathbf{x}}_{k+1} - \hat{\mathbf{x}}_k)$$
$$= F_k + \mathbf{g}_k^T(\alpha_k \mathbf{p}_k)$$

 \diamond Assume that $\alpha_k > 0$, and to ensure function decreases (i.e. $F_{k+1} < F_k$), set

$$\mathbf{g}_k^T \mathbf{p}_k < 0$$

 $\diamond \mathbf{p}_k$'s that satisfy this property provide a **descent direction** - **Steepest descent** given by $\mathbf{p}_k = -\mathbf{g}_k$

• **Summary:** gradient search methods (first-order methods) using estimate updates of the form:

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_k - \alpha_k \mathbf{g}_k$$

Line Search

- Line Search given a search direction, must decide how far to "step"
 - Expression $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ gives a new solution for all possible values of α what is the right value to pick?
 - Note that \mathbf{p}_k defines a slice through solution space is a very specific combination of how the elements of \mathbf{x} will change together.
- Would like to pick α_k to minimize $F(\mathbf{x}_k + \alpha_k \mathbf{p}_k)$
 - Can do this line search in gory detail, but that would be very time consuming
 - \diamond Often want this process to be fast, accurate, and easy
 - \diamond Especially if you are not that confident in the choice of \mathbf{p}_k
- Consider simple problem: $F(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ with

$$\mathbf{x}_0 = \begin{bmatrix} 1\\1 \end{bmatrix} \quad \mathbf{p}_0 = \begin{bmatrix} 0\\2 \end{bmatrix} \Rightarrow \mathbf{x}_1 = \mathbf{x}_0 + \alpha \mathbf{p}_0 = \begin{bmatrix} 1\\1+2\alpha \end{bmatrix}$$

which gives that $F=1+(1+2\alpha)+(1+2\alpha)^2$ so that

$$\frac{\partial F}{\partial \alpha} = 2 + 2(1 + 2\alpha)(2) = 0$$

with solution $\alpha^{\star} = -3/4$ and $\mathbf{x}_1 = \begin{bmatrix} 1 & -1/2 \end{bmatrix}^T$

- This is hard to generalize this to N-space – need a better approach

Figure 1.2: $F(x) = x_1^2 + x_1x_2 + x_2^2$ doing a line search in arbitrary direction

Line Search – II

 First step: search along the line until you think you have bracketed a "local minimum"

- Figure 1.3: Line search process
- Once you think you have a bracket of the local min what is the smallest number of function evaluations that can be made to reduce the size of the bracket?
 - Many ways to do this:
 - \diamond Golden Section Search
 - $\diamondsuit \mathsf{Bisection}$
 - \diamond Polynomial approximations
 - First 2 have linear convergence, last one has "superlinear"
- Polynomial approximation approach
 - Approximate function as quadratic/cubic in the interval and use the minimum of that polynomial as the estimate of the local min.
 - Use with care since it can go very wrong but it is a good termination approach.

• Cubic fits are a favorite:

$$\hat{F}(x) = px^{3} + qx^{2} + rx + s$$
$$\hat{g}(x) = 3px^{2} + 2qx + r (= 0 \text{ at min})$$

Then x^* is the point (pick one) $x^* = (-q \pm (q^2 - 3pr)^{1/2})/(3p)$ for which $\hat{G}(x^*) = 6px^* + 2q > 0$

• Great, but how do we find x^* in terms of what we know (F(x) and g(x) at the end of the bracket [a, b])?

$$x^{\star} = a + (b - a) \left[1 - \frac{g_b + v - w}{g_b - g_a + 2v} \right]$$

where

$$v = \sqrt{w^2 - g_a g_b}$$
 and $w = \frac{3}{b-a}(F_a - F_b) + g_a + g_b$

Content from: Scales, L. E. *Introduction to Non-Linear Optimization*. New York, NY: Springer, 1985, pp. 40. Removed due to copyright restrictions.

Figure 1.4: Cubic line search [Scales, pg. 40]

- Observations:
 - Tends to work well "near" a function local minimum (good convergence behavior)
 - But can be very poor "far away" \Rightarrow use a hybrid approach of bisection followed by cubic.
- **Rule of thumb**: do not bother making the linear search too accurate, especially at the beginning
 - A waste of time and effort
 - Check the min tolerance and reduce it as it you think you are approaching the overall solution.

Figure by MIT OpenCourseWare.

Figure 1.5: zig-zag typical of steepest decent line searches

Second Order Methods

16.323 1-10

- Second order methods typically provide faster termination
 - Assume F is quadratic, and expand gradient \mathbf{g}_{k+1} at $\hat{\mathbf{x}}_{k+1}$

$$\mathbf{g}_{k+1} \equiv \mathbf{g}(\hat{\mathbf{x}}_k + \mathbf{p}_k) = \mathbf{g}_k + G_k(\hat{\mathbf{x}}_{k+1} - \hat{\mathbf{x}}_k)$$
$$= \mathbf{g}_k + G_k \mathbf{p}_k$$

where there are no other terms because of the assumption that ${\cal F}$ is quadratic and

$$\mathbf{x}_{k} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}, \quad \mathbf{g}_{k} = \left(\frac{\partial F}{\partial \mathbf{x}}\right)^{T} = \begin{bmatrix} \frac{\partial F}{\partial x_{1}} \\ \vdots \\ \frac{\partial F}{\partial x_{n}} \end{bmatrix}_{\hat{\mathbf{x}}_{k}}$$
$$G_{k} = \begin{bmatrix} \frac{\partial^{2} F}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} F}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} F}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} F}{\partial x_{n}^{2}} \end{bmatrix}_{\hat{\mathbf{x}}_{k}}$$

- So for $\hat{\mathbf{x}}_{k+1}$ to be at the minimum, need $\mathbf{g}_{k+1} = 0$, so that

$$\mathbf{p}_k = -G_k^{-1}\mathbf{g}_k$$

- Problem is that $F(\mathbf{x})$ typically not quadratic, so the solution $\hat{\mathbf{x}}_{k+1}$ is not at the minimum \Rightarrow need to iterate
- Note that for a complicated F(x), we may not have explicit gradients (should always compute them if you can)
 - But can always approximate them using finite difference techniques but pretty expensive to find G that way
 - Use Quasi-Newton approximation methods instead, such as BFGS (Broyden-Fletcher-Goldfarb-Shanno)

FMINUNC Example

- Function minimization without constraints
 - Does quasi-Newton and gradient search
 - No gradients need to be formed
 - $-\ensuremath{\mathsf{Mixture}}$ of cubic and quadratic line searches
- Performance shown on a complex function by Rosenbrock

$$F(x_1, x_2) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2$$

- Start at $x = [-1.9 \ 2]$. Known global min it is at $x = [1 \ 1]$

Figure 1.6: How well do the algorithms work?

 Quasi-Newton (BFGS) does well - gets to optimal solution in 26 iterations (35 ftn calls), but gradient search (steepest descent) fails (very close though), even after 2000 function calls (550 iterations).

• Observations:

- 1. Typically not a good idea to start the optimization with QN, and I often find that it is better to do GS for 100 iterations, and then switch over to QN for the termination phase.
- 2. $\hat{\mathbf{x}}_0$ tends to be very important standard process is to try many different cases to see if you can find consistency in the answers.

Figure 1.7: Shows how the point of convergence changes as a function of the initial condition.

- 3. Typically the convergence is to a local minimum and can be slow
- 4. Are there any guarantees on getting a good final answer in a reasonable amount of time? Typically yes, but not always.

Unconstrained Optimization Code

```
function [F,G]=rosen(x)
 1
    %global xpath
2
3
    %F=100*(x(1)^2-x(2))^2+(1-x(1))^2;
4
5
    if size(x,1)==2, x=x'; end
6
7
    F=100*(x(:,2)-x(:,1).^2).^2+(1-x(:,1)).^2;
8
    G=[100*(4*x(1)^3-4*x(1)*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1)^2)];
9
10
11
    return
12
    %
13
^{14}
    \% Main calling part below - uses function above
    %
15
16
    global xpath
17
18
19
    clear FF
20
    x1=[-3:.1:3]'; x2=x1; N=length(x1);
    for ii=1:N.
21
^{22}
         for jj=1:N,
             FF(ii,jj)=rosen([x1(ii) x2(jj)]');
^{23}
24
         end.
25
    end
26
    % quasi-newton
27
^{28}
    %
    xpath=[];t0=clock;
29
30
    opt=optimset('fminunc');
    opt=optimset(opt,'Hessupdate','bfgs','gradobj','on','Display','Iter',...
31
         'LargeScale', 'off', 'InitialHessType', 'identity', ...
32
         'MaxFunEvals',150,'OutputFcn', Coutftn);
33
34
    x0=[-1.9 2]';
35
36
    xout1=fminunc('rosen',x0,opt) % quasi-newton
37
38
    xbfgs=xpath;
39
    % gradient search
40
41
    %
^{42}
    xpath=[];
    opt=optimset('fminunc');
43
    opt=optimset(opt,'Hessupdate','steepdesc','gradobj','on','Display','Iter',...
44
         'LargeScale', 'off', 'InitialHessType', 'identity', 'MaxFunEvals', 2000, 'MaxIter', 1000, 'OutputFcn', Coutftn);
^{45}
46
    xout=fminunc('rosen',x0,opt)
    xgs=xpath;
47
^{48}
49
    % hybrid GS and BFGS
50
51
    %
52
    xpath=[];
    opt=optimset('fminunc');
53
54
    opt=optimset(opt, 'Hessupdate', 'steepdesc', 'gradobj', 'on', 'Display', 'Iter',...
         'LargeScale','off','InitialHessType','identity','MaxFunEvals',5,'OutputFcn', @outftn);
55
    xout=fminunc('rosen',x0,opt)
56
    opt=optimset('fminunc');
57
    opt=optimset(opt,'Hessupdate','bfgs','gradobj','on','Display','Iter',...
58
         'LargeScale','off','InitialHessType','identity','MaxFunEvals',150,'OutputFcn', @outftn);
59
60
    xout=fminunc('rosen',xout,opt)
61
62
    xhyb=xpath;
63
    figure(1);clf
64
    contour(x1,x2,FF',[0:2:10 15:50:1000])
65
66
    hold on
    plot(x0(1),x0(2),'ro','Markersize',12)
67
```

```
plot(1,1,'rs','Markersize',12)
68
     plot(xbfgs(:,1),xbfgs(:,2),'bd','Markersize',12)
69
    title('Rosenbrock with BFGS')
70
71
    hold off
     xlabel('x_1')
 72
    ylabel('x_2')
73
    print -depsc rosen1a.eps;jpdf('rosen1a')
74
75
    figure(2);clf
76
     contour(x1,x2,FF',[0:2:10 15:50:1000])
77
    hold on
78
    xlabel('x_1')
79
    ylabel('x_2')
80
    plot(x0(1),x0(2),'ro','Markersize',12)
81
    plot(1,1,'rs','Markersize',12)
82
    plot(xgs(:,1),xgs(:,2),'m+','Markersize',12)
83
     title('Rosenbrock with GS')
84
85
    hold off
    print -depsc rosen1b.eps;jpdf('rosen1b')
86
87
88
    figure(3);clf
    contour(x1,x2,FF',[0:2:10 15:50:1000])
89
    hold on
90
91
     xlabel('x_1')
    ylabel('x_2')
92
    plot(x0(1),x0(2),'ro','Markersize',12)
93
     plot(1,1,'rs','Markersize',12)
^{94}
    plot(xhyb(:,1),xhyb(:,2),'m+','Markersize',12)
95
     title('Rosenbrock with GS(5) and BFGS')
96
97
     hold off
    print -depsc rosen1c.eps;jpdf('rosen1c')
98
99
    figure(4);clf
100
     mesh(x1,x2,FF')
101
    hold on
102
    plot3(x0(1),x0(2),rosen(x0')+5,'ro','Markersize',12,'MarkerFaceColor','r')
103
     plot3(1,1,rosen([1 1]),'ms','Markersize',12,'MarkerFaceColor','m')
104
    plot3(xbfgs(:,1),xbfgs(:,2),rosen(xbfgs)+5,'gd','MarkerFaceColor','g')
105
    %plot3(xgs(:,1),xgs(:,2),rosen(xgs)+5,'m+')
106
107
    hold off
    axis([-3 3 -3 3 0 1000])
108
    hh=get(gcf,'children');
109
110
     xlabel('x_1')
    ylabel('x_2')
111
    set(hh,'View',[-177 89.861],'CameraPosition',[-0.585976 11.1811 5116.63]);%
112
     print -depsc rosen2.eps;jpdf('rosen2')
113
114
```

```
1 function stop = outftn(x, optimValues, state)
2
3 global xpath
4 stop=0;
5 xpath=[xpath;x'];
6
7 return
```