Lecture # 12

Aircraft Lateral Autopilots

- Multi-loop closure
- Heading Control: linear
- Heading Control: nonlinear

Lateral Autopilots

 We can stabilize/modify the lateral dynamics using a variety of different feedback architectures.

- Look for good sensor/actuator pairings to achieve desired behavior.
- Example: Yaw damper
 - Can improve the damping on the Dutch-roll mode by adding a feedback on r to the rudder: $\delta^c_r = k_r (r_c r)$
 - Servo dynamics $H_r = \frac{3.33}{s+3.33}$ added to rudder $\delta^a_r = H_r \delta^c_r$
 - System:

Figure 2: Lateral pole-zero map $G_{\delta^c_r r}$

Note that the gain of the plant is negative (K_{plant} < 0), so if k_r < 0, then K = K_{plant}k_r > 0, so must draw a 180° locus (neg feedback)

Figure 3: Lateral pole-zero map. Definitely need $k_r < 0$

- Root locus with $k_r < 0$ looks pretty good as we have authority over the four poles.
 - $-k_r = -1.6$ results in a large increase in the Dutch-roll damping and spiral/roll modes have combined into a damped oscillation.
- Yaw damper looks great, but this implementation has a problem.
 - There are various flight modes that require a steady yaw rate $(r_{ss} \neq 0)$. For example, steady turning flight.
 - Our current yaw damper would not allow this to happen it would create the rudder inputs necessary to cancel out the motion !!
 - **Exact opposite of what we want to have happen**, which is to damp out any oscillations about the steady turn.

Yaw Damper: Part 2

• Can avoid this problem to some extent by filtering the feedback signal.

- Feedback only a high pass version of the r signal.

- High pass cuts out the low frequency content in the signal
 - \Rightarrow steady state value of r would not be fed back to the controller.
- New yaw damper: $\delta_r^c = k_r(r_c H_w(s)r)$ where $H_w(s) = \frac{\tau s}{\tau s + 1}$ is the "washout" filter.

Figure 4: Washout filter with $\tau = 4.2$

• New control picture

Figure 5: Root Locus with the washout filter included.

- Zero in $H_w(s)$ traps a pole near the origin, but it is slow enough that it can be controlled by the pilot.
- Obviously has changed the closed loop pole locations (♦ ⇒ ◄), but k_r = −1.6 still seems to give a well damped response.

Figure 6: Impulse response of closed loop system with and without the Washout filter ($\tau = 4.2$). Commanded $r_c = 0$, and both have $(\delta_r)_{ss} = 0$, but without the filter, $r_{ss} = 0$, whereas with it, $r_{ss} \neq 0$.

- For direct comparison with and without the filter, applied impulse as r_c to both closed-loop systems and then calculated r and δ_r .
- Bottom plot shows that control signal quickly converges to zero in both cases, i.e., no more control effort is being applied to correct the motion.
- But only the one with the washout filter produces a zero control input even though the there is a steady turn ⇒ the controller will not try to fight a commanded steady turn.

Heading Autopilot Design

- So now have the yaw damper added correctly and want to control the heading $\psi.$
 - Need to bank the aircraft to accomplish this.
 - Result is a "coordinated turn" with angular rate $\dot{\psi}$

FROM BEHIND

• Aircraft banked to angle ϕ so that vector sum of mg and $mU_0\dot{\psi}$ is along the body z-axis

- Summing in the body y-axis direction gives $mu_0\dot{\psi}\cos\phi=mg\sin\phi$

$$\tan\phi = \frac{U_0\dot{\psi}}{g}$$

• Since typically $\phi \ll 1$, we have

$$\phi \approx \frac{U_0 \dot{\psi}}{g}$$

gives the desired bank angle for a specified turn rate.

- Problem now is that $\dot{\psi}$ tends to be a noisy signal to base out bank angle on, so we generate a smoother signal by filtering it.
 - Assume that the desired heading is known ψ_d and we want ψ to follow ψ_d relatively slowly
 - Choose dynamics $au_1 \dot{\psi} + \psi = \psi_d$

$$\Rightarrow \frac{\psi}{\psi_d} = \frac{1}{\tau_1 s + 1}$$

with τ_1 =15-20sec depending on the vehicle and the goals.

- A low pass filter that eliminates the higher frequency noise.

• Filtered heading angle satisfies

$$\dot{\psi} = \frac{1}{\tau_1} \left(\psi_d - \psi \right)$$

which we can use to create the desired bank angle:

$$\phi_d = \frac{U_0}{g} \dot{\psi} = \frac{U_0}{\tau_1 g} \left(\psi_d - \psi \right)$$

Roll Control

• Given this desired bank angle, we need a **roll controller** to ensure that the vehicle tracks it accurately.

– Aileron is best actuator to use: $\delta_a = k_\phi (\phi_d - \phi) - k_p p$

• To design k_{ϕ} and k_{p} , can just use the approximation of the roll mode

$$\begin{array}{c} I'_{xx}\dot{p} = L_p p + L_{\delta_a}\delta_a \\ \dot{\phi} = p \end{array} \right\} I'_{xx}\ddot{\phi} - L_p\dot{\phi} = L_{\delta_a}\delta_a$$

which gives

$$\frac{\phi}{\delta_a} = \frac{L_{\delta_a}}{s(I'_{xx}s - L_p)}$$

• For the design, add the aileron servo dynamics

$$H_a(s) = \frac{1}{0.15s + 1}, \quad \delta_a^a = H_a(s)\delta_a^c$$

• PD controller $\delta^c_a = -k_\phi(s\gamma + 1) + k_\phi\phi_d$, adds zero at $s = -1/\gamma$

Figure 7: Root Locus for roll loop – closed Loop poles for $K_p = -20$, $K_{\phi} = -30$

Reponse to step input $\varphi_c{=}15~\text{degs}~(0.26~\text{rad})$

Figure 9: Roll response to a step command for ϕ_c . Note the adverse yaw effects.

Heading Autopilot

• Putting the pieces together we get the following autopilot controller

• Last step: analyze effect of closing the $\psi \rightarrow \phi_d$ loop

Heading Command Loop τ_1 =12 sec

Figure 10: Heading loop root locus. Closed loop poles for gain $U_0/(g\tau_1)$. 8th order system, but RL fairly well behaved.

- Measure ϕ with a vertical gyro and ψ with a directional gyro
- Add a limiter to ϕ_d or else we can get some very large bank angles

- Design variables are K_{ϕ} , K_p , τ_1 , τ , and K_r
- Multi-loop closure must be done carefully
 - Must choose the loop gains carefully so that each one is slower than the one "inside"
 - \Rightarrow can lead to slow overall response
 - Analysis on fully coupled system might show that the controllers designed on subsystem models interact with other modes (poles)
 - \Rightarrow several iterations might be required

• Now need a way to specify ψ_d

Figure 11: Response to 15 deg step in ψ_c . Note the bank angle is approximately 30 degs, which is about the maximum allowed. Decreasing τ_1 tends to increase ϕ_{max} .

Ground Track Control

• Consider scenario shown - use this to determine desired heading ψ_d

Figure 12: Heading definitions

- Are initially at (0,0), moving along X_e ($\psi_0 = 0$)
- Want to be at (0,1000) moving along dashed line angled at ψ_{ref}
- Separation distance $d = Y_{ref} Y_{a/c}$ ($d_0 = 1000$)
 - Desired inertial y position y position of aircraft

$$\dot{d} = U_0 \sin(\psi_{ref} - \psi) \approx U_0(\psi_{ref} - \psi)$$

• Want to smoothly decrease d to zero, use a filter so that

$$\dot{d} = -\frac{1}{\tau_d} d \qquad \tau_d = 30 \text{ sec}$$

$$\Rightarrow -\frac{1}{\tau_d} d = U_0(\psi_{ref} - \psi)$$

$$\implies \psi = \psi_{ref} + \frac{1}{\tau_d U_0} d = \psi_{ref} + \frac{1}{\tau_d U_0} (Y_{ref} - Y_{a/c})$$

which includes a feedback on the aircraft inertial Y position. \Rightarrow Use this as the input ψ_d .

Figure 13: Simulink implementation - run ac3.m first

Figure 14: Path following for ground track controller

Figure 15: Roll command following for ground track controller

Figure 16: Heading following for ground track controller

Alternative Strategy

- Sanghyuk Park developed an alternative tracking algorithm that he presented this past summer¹
- Guidance logic selects a reference point on the desired trajectory and uses it to generate a lateral acceleration command.
 - <u>Selection of Reference Point</u> Reference point is on the desired path at a distance (L_1) forward of the vehicle Figure 17.

-<u>Lateral Acceleration Command</u> – determined by $a_{s_{cmd}} = 2\frac{V^2}{L_1}\sin\eta$

Figure 17: Diagram for Guidance Logic

- Direction of acceleration depends on sign of angle between the L₁ line segment and the vehicle velocity vector.
 - If selected reference point to the right of the vehicle velocity vector, then the vehicle will be commanded to accelerate to the right (see Figure 17) \Rightarrow vehicle will tend to align its velocity direction with the direction of the L_1 line segment.

¹Sanghyuk Park, John Deyst, and Jonathan How, "A New Nonlinear Guidance Logic for Trajectory Tracking," AIAA GNC 2004.

- Figure 18 shows evolution of the guidance logic in one time step and Figure 19 shows the trajectory of the vehicle over several time steps.
 - Vehicle initially starts from a location far away from the desired path, and eventually converges to it.
 - If vehicle far from the desired path, then the guidance logic rotates the vehicle so that its velocity direction approaches the desired path at a large angle.
 - If vehicle close to the desired path, then the guidance logic rotates the vehicle so its velocity direction approaches the desired path at a small angle.

• Figure 20 defines the notation used for a linearization.

Figure 20: Linear Model for Straight-line Following Case

- $-L_1$ is the distance from the vehicle to the reference point.
- -d is the cross-track error
- -V is the vehicle nominal speed.
- Assuming η is small $\sin \eta \approx \eta = \eta_1 + \eta_2$ and

$$\eta_1 \approx \frac{d}{L_1}, \quad \eta_2 \approx \frac{\dot{d}}{V}$$

Combining the above gives

$$a_{s_{cmd}} = 2\frac{V^2}{L_1}\sin\eta \approx 2\frac{V}{L_1}\left(\dot{d} + \frac{V}{L_1}d\right) \tag{1}$$

- Linearization yields a PD controller for the cross-track error.
- Ratio of V and separation distance L_1 is an important factor in determining the proportional and derivative controller gains.
- Key points: NL form works significantly better than a PD and is much more tolerant to winds disturbances.

Implementation

- Can implement this command by assuming that vehicle maintains sufficient lift to balance weight, even though banked at angle ϕ .
 - Requires that the vehicle speed up and/or change to a larger $\alpha.$ Lift increment

$$\Delta C_L = \frac{L - mg}{QS} \equiv (n - 1) \frac{W}{QS}$$

where $n \equiv L/W$ is the *load factor*.

- Assume that $L\cos\phi = W$, then $L\sin\phi = ma_s$, so that

$$\tan\phi = \frac{a_s}{g}$$

• We can use this to develop ϕ_d that we apply to the roll controller.

- Some simulations shown
 - Works well hardest part is determining where to place the reference point, which is L_1 ahead along the path.
 - Recall that L_1 acts like a gain in the controller making it too small can drive the aircraft unstable.

Figure 22: simulation #1: bank angle. Limited to 30 degs here.

Flight Test

- Guidance algorithm implemented and tested with two UAVs [Parent Child Unmanned Air Vehicle (PCUAV) project by Prof. Deyst]
 - Required lateral acceleration achieved using bank angle control
 - Nominal flight velocity of about 25 m/s, the choice of L_1 =150 m results in the associated crossover frequency at 0.4 rad/s.
- Figure 24 shows the flight data for the Mini vehicle using the guidance logic in the lateral dynamics.
 - Plot shows the 2-dimensional trajectory of the Mini vehicle (-) with a commanded desired trajectory (- -).
 - Small numbers along the trajectory are the flight times recorded in the onboard avionics.
 - Lateral displacement between the vehicle and the desired path within ± 2 meters for the 75% of its flight time and within ± 3 meters for 96% of the flight time

- A similar flight test was performed for the OHS Parent (see Figure 25)
 - After the transient period, the trajectory of the vehicle followed the commanded path within ± 2 meters for the 78% of its flight time and within ± 3 meters for 97% of the flight time.

- Then demonstrated rendezvous from any arbitrary initial positions to a configuration of tight formation flight.
 - Figures 26 show the positions of the Parent and the Mini in the north-east 2-D map every 10 seconds.
 - OHS Parent vehicle follows the circular flight path, with no knowledge of the Mini vehicle's location.
 - Mini vehicle schedules its flight path and performs formation flight by receiving position information from the OHS Parent.

Figure 26: Flight Data - Rendezvous Trajectories of OHS and Mini (O:OHS, M:Mini)

```
% newr.m
1
                                                                 53
     \% Analyze tracking algorithm by Park et al
2
                                                                 54
3
     % AIAA GNC 2004
                                                                 55
4
    %
                                                                  56
     \% Assumes that ac3.m has been run to generate syscl
5
                                                                  57
     % Jonathan How
6
                                                                 58
     % MIT 16.333 Fall 2004
                                                                  59
7
                                                                  60
     %
9
                                                                 61
     close all
10
                                                                  62
     dt=1; % time step for the simulation
11
                                                                  63
     U0=235.9;
12
                                                                 64
     path=[];
13
                                                                  65
14
                                                                 66
     icase=1:
15
                                                                 67
     % 2 path cases considered
16
                                                                  68
     if jcase==1
                                                                 69
17
         t=[0:5*dt:2500]';
18
                                                                 70
         omp=.0025;
19
                                                                  71
         path=24000*[sin(omp*t) (1-cos(omp*t))];
20
                                                                  72
21
         xe=0;ye=1500;
                                                                 73
         X=[.1 0 0 0*pi/180 0*pi/180 0 0 0]';
^{22}
                                                                  ^{74}
     else
23
                                                                  75
^{24}
         t=[0:dt:1350]';
                                                                  76
         path(:,1)=U0*t;
^{25}
                                                                 77
         omp=.005:
26
                                                                  78
         path(:,2)=500*(-cos(2*pi*omp*t)+1).*exp(.002*t);
27
                                                                  79
         xe=0; ye=-1000;
^{28}
                                                                  80
         X=[.1 0 0 -15*pi/180 -15*pi/180 0 0 0]';
29
                                                                  81
30
     end
                                                                  82
31
                                                                  83
     % Discretize the dynamics with time step dt
32
                                                                  84
     % system has the inner yaw and roll loops closed
                                                                  85
33
     [A.B.C.D]=ssdata(svscl):
34
                                                                 86
     syscld=c2d(ss(A,B,C,D),dt);
35
                                                                  87
     [Ad,Bd,Cd,Dd]=ssdata(syscld);
                                                                 88
36
     Bd=Bd(:,1);Dd=Dd(:,1); % only need first input
37
                                                                 89
38
                                                                  90
     % bank angle limit
39
                                                                 91
40
     philim=30;
                                                                 ^{92}
^{41}
                                                                 93
     %inputs are phi_d and 0
42
                                                                 94
^{43}
     %state x=[v p r phi Psi xx xx xx]
                                                                 95
     L1=2000; % look ahead distance
44
                                                                 96
     store=[];
45
                                                                 97
46
                                                                  98
     % find the point on the path L1 ahead
47
                                                                 99
     ii=find((xe-path(:,1)).^2+(ye-path(:,2)).^2 < L1^2); 100</pre>
48
49
     iii=max(ii);
                                                                 101
     %
50
                                                                 102
     %
51
                                                                 103
     %
52
                                                                 104
```

```
kk=1;
while (~isempty(iii)) & (kk< length(t)-1)
    kk=kk+1;
    aim_point=path(iii,:);
    xedot=U0*cos(X(5))-X(1)*cos(X(4))*sin(X(5));
    yedot=U0*sin(X(5))+X(1)*cos(X(4))*cos(X(5));
    v1=[xedot yedot]';
    v2=[aim_point(1)-xe aim_point(2)-ye]';
    v1=v1/norm(v1);
    v2=v2/norm(v2);
    [v1 v2]:
    temp=cross([v1;0],[v2;0]);
    eta=acos(v1'*v2)*sign(temp(3));
    phi_d=atan(2*U0^2/L1*sin(eta)/9.81);
    phi_d=max(min(phi_d,philim*pi/180),-philim*pi/180);
    store=[store;[t(kk) X' xe ye phi_d v2']];
    % propagate forward a step
    X=Ad*X+Bd*phi_d;
    xe=xe+xedot*dt;
    ye=ye+yedot*dt;
    ii=find((xe-path(:,1)).^2+(ye-path(:,2)).^2 < L1^2);</pre>
    iii=max(ii);
end
figure(1);clf
plot(store(:,11),store(:,10),'m');
hold on;plot(path(:,2),path(:,1),'g');
legend('veh','Path');xlabel('Y_e');
ylabel('x_e');setlines(2);hold off
if jcase==1
    axis('square');axis('equal')
    print -depsc park_1; jpdf('park_1')
else
    orient tall
    print -depsc park_1a; jpdf('park_1a')
end
figure(2);clf
plot(store(:,1),store(:,[5 12])*180/pi);
axis([0 t(kk) -philim*1.1 philim*1.1])
xlabel('time');ylabel('\phi and \phi_d');
legend('\phi','\phi_d');setlines(2)
if jcase==1
   print -depsc park_2; jpdf('park_2')
else
    print -depsc park_2a; jpdf('park_2a')
end
return
```