Matrix Diagonalization

- Suppose A is diagonizable with independent eigenvectors

$$
V=\left[v_{1}, \ldots, v_{n}\right]
$$

- use similarity transformations to diagonalize dynamics matrix

$$
\begin{aligned}
\dot{x} & =A x \Rightarrow \dot{x}_{d}=A_{d} x_{d} \\
V^{-1} A V & =\left[\begin{array}{lll}
\lambda_{1} & \\
& & \\
& & \lambda_{n}
\end{array}\right] \triangleq \Lambda=A_{d}
\end{aligned}
$$

- Corresponds to change of state from x to $x_{d}=V^{-1} x$
- System response given by $e^{A t}$, look at power series expansion

$$
\begin{aligned}
A t & =V \Lambda t V^{-1} \\
(A t)^{2} & =\left(V \Lambda t V^{-1}\right) V \Lambda t V^{-1}=V \Lambda^{2} t^{2} V^{-1} \\
\Rightarrow(A t)^{n} & =V \Lambda^{n} t^{n} V^{-1} \\
e^{A t} & =I+A t+\frac{1}{2}(A t)^{2}+\ldots \\
& =V\left\{I+\Lambda+\frac{1}{2} \Lambda^{2} t^{2}+\ldots\right\} V^{-1} \\
& =V e^{\Lambda t} V^{-1}=V\left[\begin{array}{ll}
e^{\lambda_{1} t} & \\
& \\
& \left.e^{\lambda_{n} t}\right]
\end{array}\right] V^{-1}
\end{aligned}
$$

- Taking Laplace transform,

$$
\begin{aligned}
(s I-A)^{-1} & =V\left[\begin{array}{ccc}
\frac{1}{s-\lambda_{1}} & & \\
& \cdot & \\
& & \frac{1}{s-\lambda_{n}}
\end{array}\right] V^{-1} \\
& =\sum_{i=1}^{n} \frac{R_{i}}{s-\lambda_{i}}
\end{aligned}
$$

where the residue $R_{i}=v_{i} w_{i}^{T}$, and we define

$$
V=\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right], V^{-1}=\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right]
$$

- Note that the w_{i} are the left eigenvectors of A associated with the right eigenvectors v_{i}

$$
\begin{gathered}
A V=V\left[\begin{array}{lll}
\lambda_{1} & & \\
& \cdot & \\
& & \lambda_{n}
\end{array}\right] \Rightarrow V^{-1} A=\left[\begin{array}{lll}
\lambda_{1} & & \\
& & \\
& & \\
& & \lambda_{n}
\end{array}\right] V^{-1} \\
{\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right] A=\left[\begin{array}{lll}
\lambda_{1} & & \\
& & \\
& & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right]}
\end{gathered}
$$

where $w_{i}^{T} A=\lambda_{i} w_{i}^{T}$

- So, if $\dot{x}=A x$, the time domain solution is given by

$$
\begin{aligned}
& x(t)=\sum_{i=1}^{n} e^{\lambda_{i} t} v_{i} w_{i}^{T} x(0) \quad \text { dyad } \\
& x(t)=\sum_{i=1}^{n}\left[w_{i}^{T} x(0)\right] e^{\lambda_{i} t} v_{i}
\end{aligned}
$$

- The part of the solution $v_{i} e^{\lambda_{i} t}$ is called a mode of a system
- solution is a weighted sum of the system modes
- weights depend on the components of $x(0)$ along w_{i}
- Can now give dynamics interpretation of left and right eigenvectors:

$$
A v_{i}=\lambda_{i} v_{i}, w_{i} A=\lambda_{i} w_{i}, w_{i}^{T} v_{j}=\delta_{i j}
$$

so if $x(0)=v_{i}$, then

$$
\begin{aligned}
x(t) & =\sum_{i=1}^{n}\left(w_{i}^{T} x(0)\right) e^{\lambda_{i} t} v_{i} \\
& =e^{\lambda_{i} t} v_{i}
\end{aligned}
$$

\Rightarrow so right eigenvectors are initial conditions that result in relatively simple motions $x(t)$.

With no external inputs, if the initial condition only disturbs one mode, then the response consists of only that mode for all time.

- If A has complex conjugate eigenvalues, the process is similar but a little more complicated.
- Consider a 2×2 case with A having eigenvalues $a \pm b \mathbf{i}$ and associated eigenvectors e_{1}, e_{2}, with $e_{2}=\bar{e}_{1}$. Then

$$
\begin{aligned}
A & =\left[e_{1} \mid e_{2}\right]\left[\begin{array}{cc}
a+b \mathbf{i} & 0 \\
0 & a-b \mathbf{i}
\end{array}\right]\left[e_{1} \mid e_{2}\right]^{-1} \\
& =\left[e_{1} \mid \bar{e}_{1}\right]\left[\begin{array}{cc}
a+b \mathbf{i} & 0 \\
0 & a-b \mathbf{i}
\end{array}\right]\left[e_{1} \mid \bar{e}_{1}\right]^{-1} \equiv T D T^{-1}
\end{aligned}
$$

- Now use the transformation matrix

$$
M=0.5\left[\begin{array}{rr}
1 & -\mathbf{i} \\
1 & \mathbf{i}
\end{array}\right] \quad M^{-1}=\left[\begin{array}{rr}
1 & 1 \\
\mathbf{i} & -\mathbf{i}
\end{array}\right]
$$

- Then it follows that

$$
\begin{aligned}
A & =T D T^{-1}=(T M)\left(M^{-1} D M\right)\left(M^{-1} T^{-1}\right) \\
& =(T M)\left(M^{-1} D M\right)(T M)^{-1}
\end{aligned}
$$

which has the nice structure:

$$
A=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}
$$

where all the matrices are real.

- With complex roots, the diagonalization is to a block diagonal form.
- For this case we have that

$$
e^{A t}=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right]\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}
$$

- Note that $\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}$ is the matrix that inverts

$$
\begin{aligned}
& {\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]} \\
& \qquad\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- So for an initial condition to excite just this mode, can pick $x(0)=\left[\operatorname{Re}\left(e_{1}\right)\right]$, or $x(0)=\left[\operatorname{Im}\left(e_{1}\right)\right]$ or a linear combination.
- Example $x(0)=\left[\operatorname{Re}\left(e_{1}\right)\right]$

$$
\begin{aligned}
x(t)= & e^{A t} x(0)=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right] \\
& {\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}\left[\operatorname{Re}\left(e_{1}\right)\right] } \\
= & \left.\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
= & e^{a t}\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]\left[\begin{array}{r}
\cos (b t) \\
-\sin (b t)
\end{array}\right] \\
= & e^{a t}\left(\operatorname{Re}\left(e_{1}\right) \cos (b t)-\operatorname{Im}\left(e_{1}\right) \sin (b t)\right)
\end{aligned}
$$

which would ensure that only this mode is excited in the response

Example: Spring Mass System

- Classic example: spring mass system consider simple case first: $m_{i}=1$, and $k_{i}=1$

$$
\begin{aligned}
x & =\left[\begin{array}{llll}
z_{1} & z_{2} & z_{3} & \dot{z}_{1} \\
\dot{z}_{2} & \dot{z}_{3}
\end{array}\right] \\
A & =\left[\begin{array}{ccc}
0 & I \\
-M^{-1} K & 0
\end{array}\right] \quad M=\operatorname{diag}\left(m_{i}\right) \\
K & =\left[\begin{array}{ccc}
k_{1}+k_{2}+k_{5} & -k_{5} & -k_{2} \\
-k_{5} & k_{3}+k_{4}+k_{5} & -k_{3} \\
-k_{2} & -k_{3} & k_{2}+k_{3}
\end{array}\right]
\end{aligned}
$$

- Eigenvalues and eigenvectors of the undamped system

$$
\begin{array}{ccc}
\lambda_{1}= \pm 0.77 \mathbf{i} & \lambda_{2}= \pm 1.85 \mathbf{i} & \lambda_{3}= \pm 2.00 \mathbf{i} \\
v_{1} & v_{2} & v_{3} \\
& & \\
1.00 & 1.00 & 1.00 \\
1.00 & 1.00 & -1.00 \\
1.41 & -1.41 & 0.00 \\
\pm 0.77 \mathbf{i} & \pm 1.85 \mathbf{i} & \pm 2.00 \mathbf{i} \\
\pm 0.77 \mathbf{i} & \pm 1.85 \mathbf{i} & \mp 2.00 \mathbf{i} \\
\pm 1.08 \mathbf{i} & \mp 2.61 \mathbf{i} & 0.00
\end{array}
$$

- Initial conditions to excite just the three modes:

$$
x_{i}(0)=\alpha_{1} \operatorname{Re}\left(v_{i}\right)+\alpha_{2} \operatorname{Im}\left(v_{1}\right) \quad \forall \alpha_{j} \in \mathbf{R}
$$

- Simulation using $\alpha_{1}=1, \alpha_{2}=0$
- Visualization important for correct physical interpretation
- Mode $1 \lambda_{1}= \pm 0.77 \mathrm{i}$

- Lowest frequency mode, all masses move in same direction
- Middle mass has higher amplitude motions z_{3}, motions all in phase

- Mode $2 \lambda_{2}= \pm 1.85 \mathbf{i}$

M_{1}	M_{3}
\rightarrow	M_{2}

- Middle frequency mode has middle mass moving in opposition to two end masses
- Again middle mass has higher amplitude motions z_{3}

- Mode $3 \lambda_{3}= \pm 2.00 \mathbf{i}$

| M_{1} | M_{3} M_{2}
 \rightarrow 0$\quad \leftarrow$ |
| :--- | :---: | :---: |

- Highest frequency mode, has middle mass stationary, and other two masses in opposition

- Eigenvectors with that correspond with more constrained motion of the system are associated with higher frequency eigenvalues

