### 16.333: Lecture \# 7

Approximate Longitudinal Dynamics Models

- A couple more stability derivatives
- Given mode shapes found identify simpler models that capture the main responses


## More Stability Derivatives

- Recall from 6-2 that the derivative stability derivative terms $Z_{\dot{w}}$ and $M_{\dot{w}}$ ended up on the LHS as modifications to the normal mass and inertia terms
- These are the apparent mass effects - some of the surrounding displaced air is "entrained" and moves with the aircraft
- Acceleration derivatives quantify this effect
- Significant for blimps, less so for aircraft.
- Main effect: rate of change of the normal velocity $\dot{w}$ causes a transient in the downwash $\epsilon$ from the wing that creates a change in the angle of attack of the tail some time later - Downwash Lag effect
- If aircraft flying at $U_{0}$, will take approximately $\Delta t=l_{t} / U_{0}$ to reach the tail.
- Instantaneous downwash at the tail $\epsilon(t)$ is due to the wing $\alpha$ at time $t-\Delta t$.

$$
\epsilon(t)=\frac{\partial \epsilon}{\partial \alpha} \alpha(t-\Delta t)
$$

- Taylor series expansion

$$
\alpha(t-\Delta t) \approx \alpha(t)-\dot{\alpha} \Delta t
$$

- Note that $\Delta \epsilon(t)=-\Delta \alpha_{t}$. Change in the tail AOA can be computed as

$$
\Delta \epsilon(t)=-\frac{d \epsilon}{d \alpha} \dot{\alpha} \Delta t=-\frac{d \epsilon}{d \alpha} \dot{\alpha} \frac{l_{t}}{U_{0}}=-\Delta \alpha_{t}
$$

- For the tail, we have that the lift increment due to the change in downwash is

$$
\Delta C_{L_{t}}=C_{L_{\alpha_{t}}} \Delta \alpha_{t}=C_{L_{\alpha_{t}}} \dot{\alpha} \frac{d \epsilon}{d \alpha} \frac{l_{t}}{U_{0}}
$$

The change in lift force is then

$$
\Delta L_{t}=\frac{1}{2} \rho\left(U_{0}^{2}\right)_{t} S_{t} \Delta C_{L_{t}}
$$

- In terms of the $Z$-force coefficient

$$
\Delta C_{Z}=-\frac{\Delta L_{t}}{\frac{1}{2} \rho U_{0}^{2} S}=-\eta \frac{S_{t}}{S} \Delta C_{L_{t}}=-\eta \frac{S_{t}}{S} C_{L_{\alpha_{t}}} \dot{\alpha} \frac{d \epsilon}{d \alpha} \frac{l_{t}}{U_{0}}
$$

- We use $\bar{c} /\left(2 U_{0}\right)$ to nondimensionalize time, so the appropriate stability coefficient form is (note use $C_{z}$ to be general, but we are looking at $\Delta C_{z}$ from before):

$$
\begin{aligned}
C_{Z_{\dot{\alpha}}}=\left(\frac{\partial C_{Z}}{\partial\left(\dot{\alpha} \bar{c} / 2 U_{0}\right)}\right)_{0} & =\frac{2 U_{0}}{\bar{c}}\left(\frac{\partial C_{Z}}{\partial \dot{\alpha}}\right)_{0} \\
& =-\eta \frac{2 U_{0}}{\bar{c}} \frac{S_{t}}{S} \frac{l_{t}}{U_{0}} C_{L_{\alpha_{t}}} \frac{d \epsilon}{d \alpha} \\
& =-2 \eta V_{H} C_{L_{\alpha_{t}}} \frac{d \epsilon}{d \alpha}
\end{aligned}
$$

- The pitching moment due to the lift increment is

$$
\begin{aligned}
\Delta M_{c g} & =-l_{t} \Delta L_{t} \\
\rightarrow \Delta C_{M_{c g}} & =-l_{t} \frac{\frac{1}{2} \rho\left(U_{0}^{2}\right)_{t} S_{t} \Delta C_{L_{t}}}{\frac{1}{2} \rho U_{0}^{2} S \bar{c}} \\
& =-\eta V_{H} \Delta C_{L_{t}}=-\eta V_{H} C_{L_{\alpha_{t}}} \dot{\alpha} \frac{d \epsilon}{d \alpha} \frac{l_{t}}{U_{0}}
\end{aligned}
$$

- So that

$$
\begin{aligned}
C_{M_{\dot{\alpha}}}=\left(\frac{\partial C_{M}}{\partial\left(\dot{\alpha} \bar{c} / 2 U_{0}\right)}\right)_{0} & =\frac{2 U_{0}}{\bar{c}}\left(\frac{\partial C_{M}}{\partial \dot{\alpha}}\right)_{0} \\
& =-\eta V_{H} C_{L_{\alpha}} \frac{d \epsilon}{d \alpha} \frac{l_{t}}{U_{0}} \frac{2 U_{0}}{\bar{c}} \\
& =-2 \eta V_{H} C_{L_{\alpha}} \frac{d \epsilon}{d \alpha} \frac{l_{t}}{\bar{c}} \\
& \equiv \frac{l_{t}}{\bar{c}} C_{Z_{\dot{\alpha}}}
\end{aligned}
$$

- Similarly, pitching motion of the aircraft changes the AOA of the tail. Nose pitch up at rate $q$, increases apparent downwards velocity of tail by $q l_{t}$, changing the AOA by

$$
\Delta \alpha_{t}=\frac{q l_{t}}{U_{0}}
$$

which changes the lift at the tail (and the moment about the cg ).

- Following same analysis as above: Lift increment

$$
\begin{aligned}
\Delta L_{t} & =C_{L_{\alpha_{t}}} \frac{q l_{t}}{U_{0}} \frac{1}{2} \rho\left(U_{0}^{2}\right)_{t} S_{t} \\
\Delta C_{Z} & =-\frac{\Delta L_{t}}{\frac{1}{2} \rho\left(U_{0}^{2}\right) S}=-\eta \frac{S_{t}}{S} C_{L_{\alpha_{t}}} \frac{q l_{t}}{U_{0}} \\
C_{Z_{q}} \equiv\left(\frac{\partial C_{Z}}{\partial\left(q \bar{c} / 2 U_{0}\right)}\right)_{0}=\frac{2 U_{0}}{\bar{c}}\left(\frac{\partial C_{Z}}{\partial q}\right)_{0} & =-\eta \frac{2 U_{0}}{\bar{c}} \frac{l_{t}}{U_{0}} \frac{S_{t}}{S} C_{L_{\alpha_{t}}} \\
& =-2 \eta V_{H} C_{L_{\alpha_{t}}}
\end{aligned}
$$

- Can also show that

$$
C_{M_{q}}=C_{Z_{q}} \frac{l_{t}}{\bar{c}}
$$

- It is often good to develop simpler models of the full set of aircraft dynamics.
- Provides insights on the role of the aerodynamic parameters on the frequency and damping of the two modes.
- Useful for the control design work as well
- Basic approach is to recognize that the modes have very separate sets of states that participate in the response.
- Short Period - primarily $\theta$ and $w$ in the same phase. The $u$ and $q$ response is very small.
- Phugoid - primarily $\theta$ and $u$, and $\theta$ lags by about $90^{\circ}$. The $w$ and $q$ response is very small.
- Full equations from before:
- For the Short Period approximation,

1. Since $u \approx 0$ in this mode, then $\dot{u} \approx 0$ and can eliminate the $X$-force equation.

$$
\left[\begin{array}{c}
\dot{w} \\
\dot{q} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c|c|c}
\frac{Z_{w}}{m-Z_{\dot{w}}} & \frac{Z_{q}+m U_{0}}{m-Z_{\dot{w}}} & \frac{-m g \sin \Theta_{0}}{m-Z_{\dot{w}}} \\
\frac{\left[M_{w}+Z_{w} \Gamma\right]}{I_{y y}} & \frac{\left[M_{q}+\left(Z_{q}+m U_{0}\right) \Gamma\right]}{I_{y y}} & -\frac{m g \sin \Theta_{0} \Gamma}{I_{y y}} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
w \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
\Delta Z^{c} \\
\Delta M^{c} \\
0
\end{array}\right]
$$

2. Typically find that $Z_{\dot{w}} \ll m$ and $Z_{q} \ll m U_{0}$. Check for 747 :
$-Z_{\dot{w}}=1909 \ll m=2.8866 \times 10^{5}$
$-Z_{q}=4.5 \times 10^{5} \ll m U_{0}=6.8 \times 10^{7}$

$$
\Gamma=\frac{M_{\dot{w}}}{m-Z_{\dot{w}}} \Rightarrow \Gamma \approx \frac{M_{\dot{w}}}{m}
$$

$\left[\begin{array}{c}\dot{w} \\ \dot{q} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c|c}\frac{Z_{w}}{m} & U_{0} \\ \frac{\left[M_{w}+Z_{w} \frac{M_{\dot{w}}}{m}\right]}{I_{y y}} & \frac{\left[M_{q}+\left(m U_{0}\right) \frac{M_{\dot{w}}}{m}\right]}{I_{y y}} \\ 0 & 1\end{array} \begin{array}{c}-g \sin \Theta_{0} \\ -\frac{m g \sin \Theta_{0}}{I_{y y}} \frac{M_{\dot{w}}}{m} \\ 0\end{array}\right]\left[\begin{array}{c}w \\ q \\ \theta\end{array}\right]+\left[\begin{array}{c}\Delta Z^{c} \\ \Delta M^{c} \\ 0\end{array}\right]$
3. Set $\Theta_{0}=0$ and remove $\theta$ from the model (it can be derived from q)

- With these approximations, the longitudinal dynamics reduce to

$$
\dot{x}_{s p}=A_{s p} x_{s p}+B_{s p} \delta_{e}
$$

where $\delta_{e}$ is the elevator input, and

$$
\begin{gathered}
x_{s p}=\left[\begin{array}{c}
w \\
q
\end{array}\right] \quad, \quad A_{s p}=\left[\begin{array}{cc}
Z_{w} / m & U_{0} \\
I_{y y}^{-1}\left(M_{w}+M_{\dot{w}} Z_{w} / m\right) & I_{y y}^{-1}\left(M_{q}+M_{\dot{w}} U_{0}\right)
\end{array}\right] \\
B_{s p}=\left[\begin{array}{c}
Z_{\delta_{e}} / m \\
I_{y y}^{-1}\left(M_{\delta_{e}}+M_{\dot{w}} Z_{\delta_{e}} / m\right)
\end{array}\right]
\end{gathered}
$$

- Characteristic equation for this system: $s^{2}+2 \zeta_{s p} \omega_{s p} s+\omega_{s p}^{2}=0$, where the full approximation gives:

$$
\begin{aligned}
2 \zeta_{s p} \omega_{s p} & =-\left(\frac{Z_{w}}{m}+\frac{M_{q}}{I_{y y}}+\frac{M_{\dot{w}}}{I_{y y}} U_{0}\right) \\
\omega_{s p}^{2} & =\frac{Z_{w} M_{q}}{m I_{y y}}-\frac{U_{0} M_{w}}{I_{y y}}
\end{aligned}
$$

- Given approximate magnitude of the derivatives for a typical aircraft, can develop a coarse approximate:

$$
\left.\begin{array}{r}
2 \zeta_{s p} \omega_{s p} \approx-\frac{M_{q}}{I_{y y}} \\
\omega_{s p}^{2} \approx-\frac{U_{0} M_{w}}{I_{y y}}
\end{array}\right\} \rightarrow \begin{aligned}
& \zeta_{s p} \approx-\frac{M_{q}}{2} \sqrt{\frac{-1}{U_{0} M_{w} I_{y y}}} \\
& \omega_{s p} \approx \sqrt{\frac{-U_{0} M_{w}}{I_{y y}}}
\end{aligned}
$$

- Numerical values for 747

|  | Frequency <br> rad/sec | Damping |
| :--- | :---: | :---: |
| Full model | 0.962 | 0.387 |
| Full Approximate | 0.963 | 0.385 |
| Coarse Approximate | 0.906 | 0.187 |

Both approximations give the frequency well, but full approximation gives a much better damping estimate

- Approximations showed that short period mode frequency is determined by $M_{w}$ - measure of the aerodynamic stiffness in pitch.
- Sign of $M_{w}$ negative if cg sufficient far forward - changes sign (mode goes unstable) when cg at the stick fixed neutral point. Follows from discussion of $C_{M_{\alpha}}$ (see 2-11)
- For the Phugoid approximation, start again with:

$$
\left[\begin{array}{c}
\dot{u} \\
\dot{w} \\
\dot{q} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c|c|c|c}
\frac{X_{u}}{m} & \frac{X_{w}}{m} & 0 & -g \cos \Theta_{0} \\
\frac{Z_{u}}{m-Z_{\dot{w}}} & \frac{Z_{w}}{m-Z_{\dot{w}}} & \frac{Z_{q}+m U_{0}}{m-Z_{\dot{w}}} & \frac{-m g \sin \Theta_{0}}{m-Z_{\dot{w}}} \\
\frac{\left[M_{u}+Z_{u} \Gamma\right]}{I_{y y}} & \frac{\left[M_{w}+Z_{w} \Gamma\right]}{I_{y y}} & \frac{\left[M_{q}+\left(Z_{q}+m U_{0}\right) \Gamma\right]}{I_{y y}} & -\frac{m g \sin \Theta_{0} \Gamma}{I_{y y}} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
u \\
w \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
\Delta X^{c} \\
\Delta Z^{c} \\
\Delta M^{c} \\
0
\end{array}\right]
$$

1. Changes to $w$ and $q$ are very small compared to $u$, so we can

- Set $\dot{w} \approx 0$ and $\dot{q} \approx 0$
- Set $\Theta_{0}=0$
$\left[\begin{array}{c}\dot{u} \\ 0 \\ 0 \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c|c|c|c}\frac{X_{u}}{m} & \frac{X_{w}}{m} & 0 & -g \\ \frac{Z_{u}}{m-Z_{\dot{w}}} & \frac{Z_{w}}{m-Z_{\dot{w}}} & \frac{Z_{q}+m U_{0}}{m-Z_{\dot{w}}} & 0 \\ \frac{\left[M_{u}+Z_{u} \Gamma\right]}{I_{y y}} & \frac{\left[M_{w}+Z_{w} \Gamma\right]}{I_{y y}} & \frac{\left[M_{q}+\left(Z_{q}+m U_{0}\right) \Gamma\right]}{I_{y y}} & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}u \\ w \\ q \\ \theta\end{array}\right]+\left[\begin{array}{c}\Delta X^{c} \\ \Delta Z^{c} \\ \Delta M^{c} \\ 0\end{array}\right]$

2. Use what is left of the $Z$-equation to show that with these approximations (elevator inputs)
$\left[\begin{array}{cc}\frac{Z_{w}}{m-Z_{\dot{w}}} & \frac{Z_{q}+m U_{0}}{m-Z_{\dot{w}}} \\ \frac{\left[M_{w}+Z_{w} \Gamma\right]}{I_{y y}} & \frac{\left[M_{q}+\left(Z_{q}+m U_{0}\right) \Gamma\right]}{I_{y y}}\end{array}\right]\left[\begin{array}{c}w \\ q\end{array}\right]=-\left[\begin{array}{c}\frac{Z_{u}}{m-Z_{\dot{w}}} \\ \frac{\left[M_{u}+Z_{u} \Gamma\right]}{I_{y y}}\end{array}\right] u-\left[\begin{array}{c}\frac{Z_{\delta_{e}}}{m-Z_{\dot{w}}} \\ \frac{\left[M_{\delta_{e}}+Z_{\delta_{e}} \Gamma\right]}{I_{y y}}\end{array}\right] \delta_{e}$
3. Use $\left(Z_{\dot{w}} \ll m\right.$ so $\left.\Gamma \approx \frac{M_{\dot{w}}}{m}\right)$ and $\left(Z_{q} \ll m U_{0}\right)$ so that:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
Z_{w} & m U_{0} \\
{\left[M_{w}+Z_{w} \frac{M_{\dot{w}}}{m}\right]} & {\left[M_{q}+U_{0} M_{\dot{w}}\right]}
\end{array}\right]\left[\begin{array}{c}
w \\
q
\end{array}\right]} \\
& =-\left[\begin{array}{c}
Z_{u} \\
{\left[M_{u}+Z_{u} \frac{M_{\dot{w}}}{m}\right]}
\end{array}\right] u-\left[\begin{array}{c}
Z_{\delta_{e}} \\
{\left[M_{\delta_{e}}+Z_{\delta_{e}} \frac{M_{\dot{w}}}{m}\right]}
\end{array}\right] \delta_{e}
\end{aligned}
$$

4. Solve to show that

$$
\left[\begin{array}{c}
w \\
q
\end{array}\right]=\left[\begin{array}{c}
\frac{m U_{0} M_{u}-Z_{u} M_{q}}{Z_{w} M_{q}-m U_{0} M_{w}} \\
\frac{Z_{u} M_{w}-Z_{w} M_{u}}{Z_{w} M_{q}-m U_{0} M_{w}}
\end{array}\right] u+\left[\begin{array}{c}
\frac{m U_{0} M_{\delta_{e}}-Z_{\delta_{e}} M_{q}}{Z_{w} M_{q}-m U_{0} M_{w}} \\
\frac{Z_{\delta_{e}} M_{w}-Z_{w} M_{\delta_{e}}}{Z_{w} M_{q}-m U_{0} M_{w}}
\end{array}\right] \delta_{e}
$$

5. Substitute into the reduced equations to get full approximation:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{u} \\
\dot{\theta}
\end{array}\right]=} & {\left[\begin{array}{cc}
\frac{X_{u}}{m}+\frac{X_{w}}{m}\left(\frac{m U_{0} M_{u}-Z_{u} M_{q}}{Z_{w} M_{q}-m U_{0} M_{w}}\right) & -g \\
\left(\frac{Z_{u} M_{w}-Z_{w} M_{u}}{Z_{w} M_{q}-m U_{0} M_{w}}\right) & 0
\end{array}\right]\left[\begin{array}{c}
u \\
\theta
\end{array}\right] } \\
& +\left[\begin{array}{c}
\frac{X_{\delta_{e}}}{m}+\frac{X_{w}}{m}\left(\frac{m U_{0} M_{\delta_{e}}-Z_{\delta_{e}} M_{q}}{Z_{w} M_{q}-m U_{0} M_{w}}\right) \\
\frac{Z_{\delta_{e}} M_{w}-Z_{w} M_{\delta_{e}}}{Z_{w} M_{q}-m U_{0} M_{w}}
\end{array}\right] \delta_{e}
\end{aligned}
$$

6. Still a bit complicated. Typically get that
$-\left|M_{u} Z_{w}\right| \ll\left|M_{w} Z_{u}\right|$ (1.4:4)
$-\left|M_{w} U_{0} m\right| \gg\left|M_{q} Z_{w}\right|(1: 0.13)$
$-\left|M_{u} X_{w} / M_{w}\right| \ll X_{u}$ small
7. With these approximations, the longitudinal dynamics reduce to the coarse approximation

$$
\dot{x}_{p h}=A_{p h} x_{p h}+B_{p h} \delta_{e}
$$

where $\delta_{e}$ is the elevator input.

And

$$
\begin{gathered}
x_{p h}=\left[\begin{array}{c}
u \\
\theta
\end{array}\right] \quad A_{p h}=\left[\begin{array}{cc}
\frac{X_{u}}{m} & -g \\
\frac{-Z_{u}}{m U_{0}} & 0
\end{array}\right] \\
B_{p h}=\left[\begin{array}{c}
\frac{\left(X_{\delta_{e}}-\left[\frac{X_{w}}{M_{w}}\right] M_{\delta_{e}}\right)}{m} \\
\frac{\left(-Z_{\delta_{e}}+\left[\frac{Z_{w}}{M_{w}}\right] M_{\delta_{e}}\right)}{m U_{0}}
\end{array}\right]
\end{gathered}
$$

8. Which gives

$$
\begin{aligned}
2 \zeta_{p h} \omega_{p h} & =-X_{u} / m \\
\omega_{p h}^{2} & =-\frac{g Z_{u}}{m U_{0}}
\end{aligned}
$$

Numerical values for 747

|  | Frequency <br> rad/sec | Damping |
| :--- | :---: | :---: |
| Full model | 0.0673 | 0.0489 |
| Full Approximate | 0.0670 | 0.0419 |
| Coarse Approximate | 0.0611 | 0.0561 |

- Further insights: recall that

$$
\begin{aligned}
\left(\frac{U_{0}}{Q S}\right)\left(\frac{\partial Z}{\partial u}\right)_{0} & =-\left(\frac{U_{0}}{Q S}\right)\left(\frac{\partial L}{\partial u}\right)_{0} \equiv-\left(C_{L_{u}}+2 C_{L_{0}}\right) \\
& =-\frac{\mathbf{M}^{2}}{1-\mathbf{M}^{2}} C_{L_{0}}-2 C_{L_{0}} \approx-2 C_{L_{0}}
\end{aligned}
$$

so

$$
Z_{u} \equiv\left(\frac{\partial Z}{\partial u}\right)_{0}=\left(\frac{\rho U_{o} S}{2}\right)\left(-2 C_{L_{0}}\right)=-\frac{2 m g}{U_{0}}
$$

- Then

$$
\begin{aligned}
\omega_{p h} & =\sqrt{\frac{-g Z_{u}}{m U_{0}}}=\sqrt{\frac{m g^{2}}{m U_{0}^{2}}} \\
& =\sqrt{2} \frac{g}{U_{0}}
\end{aligned}
$$

which is exactly what Lanchester's approximation gave $\Omega \approx \sqrt{2} \frac{g}{U_{0}}$

- Note that

$$
X_{u} \equiv\left(\frac{\partial X}{\partial u}\right)_{0}=\left(\frac{\rho U_{o} S}{2}\right)\left(-2 C_{D_{0}}\right)=-\rho U_{o} S C_{D_{0}}
$$

and

$$
2 m g=\rho U_{o}^{2} S C_{L_{0}}
$$

so

$$
\begin{aligned}
\zeta_{p h} & =-\frac{X_{u}}{2 m \omega_{p h}}=-\frac{X_{u} U_{0}}{2 \sqrt{2} m g} \\
& =\frac{1}{\sqrt{2}}\left(\frac{\rho U_{o}^{2} S C_{D_{0}}}{\rho U_{o}^{2} S C_{L_{0}}}\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{C_{D_{0}}}{C_{L_{0}}}\right)
\end{aligned}
$$

so the damping ratio of the approximate phugoid mode is inversely proportional to the lift to drag ratio.


Freq Comparison from elevator (Phugoid Model) - B747 at M=0.8. Blue- Full model, Black- Full approximate model, Magenta- Coarse approximate model


Freq Comparison from elevator (Short Period Model) - B747 at M=0.8. Blue- Full model, Magenta- Approximate model

## Summary

- Approximate longitudinal models are fairly accurate
- Indicate that the aircraft responses are mainly determined by these stability derivatives:

| Property | Stability derivative |
| :--- | :---: |
| Damping of the short period | $M_{q}$ |
| Frequency of the short period | $M_{w}$ |
| Damping of the Phugoid | $X_{u}$ |
| Frequency of the Phugoid | $Z_{u}$ |

- Given a change in $\alpha$, expect changes in $u$ as well. These will both impact the lift and drag of the aircraft, requiring that we re-trim throttle setting to maintain whatever aspects of the flight condition might have changed (other than the ones we wanted to change). We have:

$$
\left[\begin{array}{c}
\Delta L \\
\Delta D
\end{array}\right]=\left[\begin{array}{cc}
L_{u} & L_{\alpha} \\
D_{u} & D_{\alpha}
\end{array}\right]\left[\begin{array}{c}
u \\
\Delta \alpha
\end{array}\right]
$$

But to maintain $L=W$, want $\Delta L=0$, so $u=-\frac{L_{\alpha}}{L_{u}} \Delta \alpha$ Giving $\Delta D=\left(-\frac{L_{\alpha}}{L_{u}} D_{u}+D_{\alpha}\right) \Delta \alpha$

$$
\begin{gathered}
C_{D_{\alpha}}=\frac{2 C_{L_{0}}}{\pi e A R} C_{L_{\alpha}} \rightarrow D_{\alpha}=Q S C_{D_{\alpha}} \\
\rightarrow L_{\alpha}=Q S C_{L_{\alpha}} \\
D_{u}=\frac{Q S}{U_{0}}\left(2 C_{D_{0}}\right) \\
L_{u}=\frac{Q S}{U_{0}}\left(2 C_{L_{0}}\right) \\
\Delta D=Q S\left(-\frac{C_{L_{\alpha}}}{2 C_{L_{0}} / U_{0}}\left(\frac{2 C_{D_{0}}}{U_{0}}\right)+C_{D_{\alpha}}\right) \Delta \alpha \\
=\frac{Q S}{C_{L_{0}}}\left(-C_{D_{0}}+\frac{2 C_{L_{0}}^{2}}{\pi e A R}\right) C_{L_{\alpha}} \Delta \alpha \\
\tan \Delta \gamma=\frac{\left(T_{0}+\Delta T\right)-\left(D_{0}+\Delta D\right)}{L_{0}+\Delta L}=\frac{-\Delta D}{L_{0}} \\
=\left(\frac{C_{D_{0}}}{C_{L_{0}}}-\frac{2 C_{L_{0}}}{\pi e A R}\right) \frac{C_{L_{\alpha}} \Delta \alpha}{C_{L_{0}}}
\end{gathered}
$$

For 747 (Reid 165 and Nelson 416), $A R=7.14$, so $\pi e A R \approx 18$, $C_{L_{0}}=0.654 C_{D_{0}}=0.043, C_{L_{\alpha}}=5.5$, for a $\Delta \alpha=-0.0185 \mathrm{rad}$ (6-7) $\Delta \gamma=-0.0006 \mathrm{rad}$. This is the opposite sign to the linear simulation results, but they are both very small numbers.

