16.333: Lecture \#2

Static Stability

Aircraft Static Stability (longitudinal)

Wing/Tail contributions

Static Stability

- Static stability is all about the initial tendency of a body to return to its equilibrium state after being disturbed

- To have a statically stable equilibrium point, the vehicle must develop a restoring force/moment to bring it back to the eq. condition
- Later on we will also deal with dynamic stability, which is concerned with the time history of the motion after the disturbance
- Can be SS but not DS, but to be DS, must be SS
$\Rightarrow \mathrm{SS}$ is a necessary, but not sufficient condition for DS
- To investigate the static stability of an aircraft, can analyze response to a disturbance in the angle of attack
- At eq. pt., expect moment about c.g. to be zero $C_{M_{c g}}=0$
- If then perturb α up, need a restoring moment that pushes nose back down (negative)
- Classic analysis:

- Eq at point B
- A/C 1 is statically stable
- Conditions for static stability

$$
C_{M}=0 ; \quad \frac{\partial C_{M}}{\partial \alpha} \equiv C_{M_{\alpha}}<0
$$

note that this requires $\left.C_{M}\right|_{\alpha_{0}}>0$

- Since $C_{L}=C_{L_{\alpha}}\left(\alpha-\alpha_{0}\right)$ with $C_{L_{\alpha}}>0$, then an equivalent condition for SS is that

$$
\frac{\partial C_{M}}{\partial C_{L}}<0
$$

Basic Aerodynamics

- Take reference point for the wing to be the aerodynamic center (roughly the $1 / 4$ chord point) ${ }^{1}$
- Consider wing contribution to the pitching moment about the c.g.
- Assume that wing incidence is i_{w} so that, if $\alpha_{w}=\alpha_{F R L}+i_{w}$, then

$$
\alpha_{F R L}=\alpha_{w}-i_{w}
$$

- With x_{k} measured from the leading edge, the moment is:

$$
\begin{aligned}
M_{c g}= & \left(L_{w} \cos \alpha_{F R L}+D_{w} \sin \alpha_{F R L}\right)\left(x_{c g}-x_{a c}\right) \\
& +\left(L_{w} \sin \alpha_{F R L}-D_{w} \cos \alpha_{F R L}\right)\left(z_{c g}\right)+M_{a c_{w}}
\end{aligned}
$$

- Assuming that $\alpha_{F R L} \ll 1$,

$$
\begin{aligned}
M_{c g} \approx & \left(L_{w}+D_{w} \alpha_{A F R L}\right)\left(x_{c g}-x_{a c}\right) \\
& +\left(L_{w} \alpha_{F R L}-D_{w}\right)\left(z_{c g}\right)+M_{a c_{w}}
\end{aligned}
$$

- But the second term contributes very little (drop)
- Non-dimensionalize:

$$
C_{L}=\frac{L}{\frac{1}{2} \rho V^{2} S} \quad C_{M}=\frac{M}{\frac{1}{2} \rho V^{2} S \bar{c}}
$$

- Gives:

$$
C_{M_{c g}}=\left(C_{L_{w}}+C_{D_{w}} \alpha_{F R L}\right)\left(\frac{x_{c g}}{\bar{c}}-\frac{x_{a c}}{\bar{c}}\right)+C_{M_{a c}}
$$

- Define:

$$
\begin{aligned}
& -x_{c g}=h \bar{c} \text { (leading edge to c.g.) } \\
& -x_{a c}=h_{\bar{n}} \bar{c} \text { (leading edge to AC) }
\end{aligned}
$$

- Then

$$
\begin{aligned}
C_{M_{c g}} & =\left(C_{L_{w}}+C_{D_{w}} \alpha_{F R L}\right)\left(h-h_{\bar{n}}\right)+C_{M_{a c}} \\
& \approx\left(C_{L_{w}}\right)\left(h-h_{\bar{n}}\right)+C_{M_{a c}} \\
& =C_{L_{w}}\left(\alpha_{w}-\alpha_{w_{0}}\right)\left(h-h_{\bar{n}}\right)+C_{M_{a c}}
\end{aligned}
$$

- Result is interesting, but the key part is how this helps us analyze the static stability:

$$
\frac{\partial C_{M_{c g}}}{\partial C_{L_{w}}}=\left(h-h_{\bar{n}}\right)>0
$$

since c.g. typically further back that $A C$

- Why most planes have a second lifting surface (front or back)

Contribution of the Tail

- Some lift provided, but moment is the key part
- Key items:

1. Angle of attack $\alpha_{t}=\alpha_{F R L}+i_{t}-\epsilon, \epsilon$ is wing downwash
2. Lift $L=L_{w}+L_{t}$ with $L_{w} \gg L_{t}$ and

$$
C_{L}=C_{L_{w}}+\eta \frac{S_{t}}{S} C_{L_{t}}
$$

$\eta=\left(1 / 2 \rho V_{t}^{2}\right) /\left(1 / 2 \rho V_{w}^{2}\right) \approx 0.8-1.2$ depending on location of tail
3. Downwash usually approximated as

$$
\epsilon=\epsilon_{0}+\frac{d \epsilon}{d \alpha} \alpha_{w}
$$

where ϵ_{0} is the downwash at α_{0}. For a wing with an elliptic distribution

$$
\epsilon \approx \frac{2 C_{L_{w}}}{\pi A R} \Rightarrow \frac{d \epsilon}{d \alpha}=\frac{2 C_{L_{\alpha_{w}}}}{\pi A R}
$$

- Pitching moment contribution: L_{t} and D_{t} are $\perp, \|$ to V^{\prime} not V
- So they are at angle $\bar{\alpha}=\alpha_{F R L}-\epsilon$ to FRL, so must rotate and then apply moment arms l_{t} and z_{t}.

$$
\begin{aligned}
M_{t}= & -l_{t}\left[L_{t} \cos \bar{\alpha}+D_{t} \sin \bar{\alpha}\right] \\
& -z_{t}\left[D_{t} \cos \bar{\alpha}-L_{t} \sin \bar{\alpha}\right]+M_{a c_{t}}
\end{aligned}
$$

- First term largest by far. Assume that $\bar{\alpha} \ll 1$, so that $M_{t} \approx-l_{t} L_{t}$

$$
\begin{aligned}
L_{t} & =\frac{1}{2} \rho V_{t}^{2} S_{t} C_{L_{t}} \\
C_{M_{t}} & =\frac{M_{t}}{\frac{1}{2} \rho V^{2} S \bar{c}}=-\frac{l_{t}}{\bar{c}} \frac{\frac{1}{2} \rho V_{t}^{2} S_{t} C_{L_{t}}}{\frac{1}{2} \rho V^{2} S} \\
& =-\frac{l_{t} S_{t}}{S \bar{c}} \eta C_{L_{t}}
\end{aligned}
$$

- Define the horizontal tail volume ratio $V_{H}=\frac{l_{t} S_{t}}{S \bar{c}}$, so that

$$
C_{M_{t}}=-V_{H} \eta C_{L_{t}}
$$

- Note: angle of attack of the tail $\alpha_{t}=\alpha_{w}-i_{w}+i_{t}-\epsilon$, so that

$$
C_{L_{t}}=C_{L_{\alpha_{t}}} \alpha_{t}=C_{L_{\alpha_{t}}}\left(\alpha_{w}-i_{w}+i_{t}-\epsilon\right)
$$

where $\epsilon=\epsilon_{0}+\epsilon_{\alpha} \alpha_{w}$

- So that

$$
\begin{aligned}
C_{M_{t}} & =-V_{H} \eta C_{L_{\alpha_{t}}}\left(\alpha_{w}-i_{w}+i_{t}-\left(\epsilon_{0}+\epsilon_{\alpha} \alpha_{w}\right)\right) \\
& =V_{H} \eta C_{L_{\alpha_{t}}}\left(\epsilon_{0}+i_{w}-i_{t}-\alpha_{w}\left(1-\epsilon_{\alpha}\right)\right)
\end{aligned}
$$

- More compact form:

$$
\begin{aligned}
C_{M_{t}} & =C_{M_{0_{t}}}+C_{M_{\alpha_{t}}} \alpha_{w} \\
\Rightarrow C_{M_{0_{t}}} & =V_{H} \eta C_{L_{\alpha_{t}}}\left(\epsilon_{0}+i_{w}-i_{t}\right) \\
\Rightarrow C_{M_{\alpha_{t}}} & =-V_{H} \eta C_{L_{\alpha_{t}}}\left(1-\epsilon_{\alpha}\right)
\end{aligned}
$$

where we can chose V_{H} by selecting l_{t}, S_{t} and i_{t}

- Write wing form as $C_{M_{w}}=C_{M_{0_{w}}}+C_{M_{\alpha_{w}}} \alpha_{w}$

$$
\begin{aligned}
& \Rightarrow C_{M_{0_{w}}}=C_{M_{a c}}-C_{L_{\alpha_{w}}} \alpha_{w_{0}}\left(h-h_{\bar{n}}\right) \\
& \Rightarrow C_{M_{\alpha_{w}}}=C_{L_{\alpha_{w}}}\left(h-h_{\bar{n}}\right)
\end{aligned}
$$

- And total is:

$$
\begin{aligned}
& C_{M_{c g}}=C_{M_{0}}+C_{M_{\alpha}} \alpha_{w} \\
& \Rightarrow C_{M_{0}}=C_{M_{a c}}-C_{L_{\alpha_{w}}} \alpha_{w_{0}}\left(h-h_{\bar{n}}\right)+V_{H} \eta C_{L_{\alpha_{t}}}\left(\epsilon_{0}+i_{w}-i_{t}\right) \\
& \Rightarrow C_{M_{\alpha}}=C_{L_{\alpha_{w}}}\left(h-h_{\bar{n}}\right)-V_{H} \eta C_{L_{\alpha_{t}}}\left(1-\epsilon_{\alpha}\right)
\end{aligned}
$$

- For static stability need $C_{M}=0$ and $C_{M_{\alpha}}<0$
- To ensure that $C_{M}=0$ for reasonable value of α, need $C_{M_{0}}>0$ \Rightarrow use i_{t} to trim the aircraft
- For $C_{M_{\alpha}}<0$, consider setup for case that makes $C_{M_{\alpha}}=0$
- Note that this is a discussion of the aircraft cg location ("find h ")
- But tail location currently given relative to c.g. (l_{t} behind it), which is buried in $V_{H} \Rightarrow$ need to define it differently
- Define $l_{t}=\bar{c}\left(h_{t}-h\right) ; h_{t}$ measured from the wing leading edge, then

$$
V_{H}=\frac{l_{t} S_{t}}{\bar{c} S}=\frac{S_{t}}{S}\left(h_{t}-h\right)
$$

which gives

$$
\begin{aligned}
C_{M_{\alpha}} & =C_{L_{\alpha_{w}}}\left(h-h_{\bar{n}}\right)-\frac{S_{t}}{S}\left(h_{t}-h\right) \eta C_{L_{\alpha_{t}}}\left(1-\epsilon_{\alpha}\right) \\
& =h\left(C_{L_{\alpha_{w}}}+\eta \frac{S_{t}}{S} C_{L_{\alpha_{t}}}\left(1-\epsilon_{\alpha}\right)\right)-C_{L_{\alpha_{w}}} h_{\bar{n}}-h_{t} \eta \frac{S_{t}}{S} C_{L_{\alpha_{t}}}\left(1-\epsilon_{\alpha}\right)
\end{aligned}
$$

- A bit messy, but note that if $L_{T}=L_{w}+L_{t}$, then

$$
C_{L_{T}}=C_{L_{w}}+\eta \frac{S_{t}}{S} C_{L_{t}}
$$

so that

$$
\begin{aligned}
C_{L_{T}} & =C_{L_{\alpha_{w}}}\left(\alpha_{w}-\alpha_{w_{0}}\right)+\eta \frac{S_{t}}{S} C_{L_{\alpha_{t}}}\left(-\epsilon_{0}-i_{w}+i_{t}+\alpha_{w}\left(1-\epsilon_{\alpha}\right)\right) \\
& =C_{L_{0}}+C_{L_{\alpha_{T}}} \alpha_{w}
\end{aligned}
$$

with $C_{L_{\alpha_{T}}}=C_{L_{\alpha_{w}}}+\eta \frac{S_{t}}{S} C_{L_{\alpha_{t}}}\left(1-\epsilon_{\alpha}\right)$

- Now have that

$$
C_{M_{\alpha}}=h C_{L_{\alpha_{T}}}-C_{L_{\alpha_{w}}} h_{\bar{n}}-h_{t} \eta \frac{S_{t}}{S} C_{L_{\alpha_{t}}}\left(1-\epsilon_{\alpha}\right)
$$

- Solve for the case with $C_{M_{\alpha}}=0$, which gives

$$
h=h_{\bar{n}}\left(\frac{C_{L_{\alpha_{w}}}}{C_{L_{\alpha_{T}}}}\right)+\eta \frac{S_{t}}{S} h_{t} \frac{C_{L_{\alpha_{t}}}}{C_{L_{\alpha_{T}}}}\left(1-\epsilon_{\alpha}\right)
$$

- Note that with $\gamma=\frac{C_{L_{\alpha_{T}}}}{C_{L_{\alpha_{w}}}} \approx 1$, then

$$
h=\frac{h_{\bar{n}}+(\gamma-1) h_{t}}{\gamma} \equiv h_{N P}
$$

which is called the stick fixed neutral point

- Can rewrite as

$$
\begin{aligned}
C_{M_{\alpha}} & =C_{L_{\alpha_{T}}}\left(h-h_{\bar{n}}\left(\frac{C_{L_{\alpha_{w}}}}{C_{L_{\alpha_{T}}}}\right)-\eta \frac{S_{t}}{S} h_{t} \frac{C_{L_{\alpha_{t}}}}{C_{L_{\alpha_{T}}}}\left(1-\epsilon_{\alpha}\right)\right) \\
& =C_{L_{\alpha_{T}}}\left(h-h_{N P}\right)
\end{aligned}
$$

which gives the pitching moment about the c.g. as a function of the location of the c.g. with respect to the stick fixed neutral point

- For static stability, c.g. must be in front of NP $\left(h_{N P}>h\right)$
- Summary plot: $\left(a=C_{L_{\alpha_{T}}}\right)$ and ($\left.h_{n}=h_{N P}\right)$

- Observations:
- If c.g. at $h_{N P}$, then $C_{M_{\alpha}}=0$
- If c.g. aft of $h_{N P}$, then $C_{M_{\alpha}}>0$ (statically unstable)
- What is the problem with the c.g. being too far forward?

Control Effects

- Can use elevators to provide incremental lift and moments
- Use this to trim aircraft at different flight settings, i.e. $C_{M}=0$

- Deflecting elevator gives:

$$
\begin{aligned}
& \Delta C_{L}=\frac{d C_{L}}{d \delta_{e}} \delta_{e}=C_{L_{\delta_{e}}} \delta_{e}, \text { with } C_{L_{\delta_{e}}}>0 \\
& \Rightarrow C_{L}=C_{L_{\alpha}}\left(\alpha-\alpha_{0}\right)+C_{L_{\delta_{e}}} \delta_{e}
\end{aligned}
$$

$\Delta C_{m}=\frac{d C_{m}}{d \delta_{e}} \delta_{e}=C_{m_{\delta_{e}}} \delta_{e}$, with $C_{m_{\delta_{e}}}<0$
$\Rightarrow C_{m}=C_{m_{0}}+C_{m_{\alpha}} \alpha+C_{m_{\delta_{e}}} \delta_{e}$

- For trim, need $C_{m}=0$ and $C_{L_{\text {TRIM }}}$

$$
\left[\begin{array}{cc}
C_{m_{\alpha}} & C_{m_{\delta_{e}}} \\
C_{L_{\alpha}} & C_{L_{\delta_{e}}}
\end{array}\right]\left[\begin{array}{c}
\alpha_{T R I M} \\
\left(\delta_{e}\right)_{\mathrm{TRIM}}
\end{array}\right]=\left[\begin{array}{c}
-C_{m_{0}} \\
C_{L_{\mathrm{TRIM}}}+C_{L_{\alpha}} \alpha_{0}
\end{array}\right]
$$

So elevator angle needed to trim:

$$
\left(\delta_{e}\right)_{\mathrm{TRIM}}=\frac{C_{L_{\alpha}} C_{m_{0}}+C_{m_{\alpha}}\left(C_{L_{\mathrm{TRIM}}}+C_{L_{\alpha}} \alpha_{0}\right)}{C_{m_{\alpha}} C_{L_{\delta_{e}}}-C_{L_{\alpha}} C_{m_{\delta_{e}}}}
$$

- Note that typically elevator down is taken as being positive
- Also, for level flight, $C_{L_{\text {TRIM }}}=W /\left(1 / 2 \rho V^{2} S\right)$, so expect $\left(\delta_{e}\right)_{\text {TRIM }}$ to change with speed.

