16.333: Lecture \#3

Frame Rotations

Euler Angles

Quaternions

Euler Angles

- For general applications in 3D, often need to perform 3 separate rotations to relate our "inertial frame" to our "body frame"
- Especially true for aircraft problems
- There are many ways to do this set of rotations - with the variations be based on the order of the rotations
- All would be acceptable
- Some are more commonly used than others
- Standard: start with the body frame (x, y, z) aligned with the inertial (X, Y, Z), and then perform 3 rotations to re-orient the body frame.
(1) Rotate by ψ about $Z \Rightarrow x^{\prime}, y^{\prime}, z^{\prime}$
(2) Rotate by θ about $y^{\prime} \Rightarrow x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$
(3) Rotate by ϕ about $x^{\prime \prime} \Rightarrow x, y, z$

Euler angles:

- $\psi \sim$ Heading/yaw
$-\theta \sim$ Pitch
$-\phi \sim$ Roll

- Can write these rotations in a convenient form:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
c \psi & s \psi & 0 \\
-s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=T_{3}(\psi)\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ccc}
c \theta & 0 & -s \theta \\
0 & 1 & 0 \\
s \theta & 0 & c \theta
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=T_{2}(\theta)\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \phi & s \phi \\
0 & -s \phi & c \phi
\end{array}\right]\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]=T_{1}(\phi)\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]}
\end{aligned}
$$

which combines to give:

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =T_{1}(\phi) T_{2}(\theta) T_{3}(\psi)\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c \theta c \psi & c \theta s \psi & -s \theta \\
-c \phi s \psi+s \phi s \theta c \psi & c \phi c \psi+s \phi s \theta s \psi & s \phi c \theta \\
s \phi s \psi+c \phi s \theta c \psi & -s \phi c \psi+c \phi s \theta s \psi & c \phi c \theta
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
\end{aligned}
$$

- Note that the order that these rotations are applied matters and will greatly change the answer - matrix multiplies of T_{i} must be done consistently.
- To get the angular velocity in this case, we have to include three terms:
(1) $\dot{\psi}$ about Z
(2) $\dot{\theta}$ about y^{\prime}
(3) $\dot{\phi}$ about $x^{\prime \prime}$
which we combine to get $\vec{\omega}$
- Want to write $\vec{\omega}$ in terms of its components in final frame (body)
- Use the rotation matrices
- Example: rotate $\dot{\psi}$ about $Z \equiv z^{\prime}$
- In terms of X, Y, Z, frame rotation rate has components $\left[\begin{array}{l}0 \\ 0 \\ \dot{\psi}\end{array}\right]$, which is the same as in frame $x^{\prime}, y^{\prime}, z^{\prime}$
- To transform a vector from $x^{\prime}, y^{\prime}, z^{\prime}$ to x, y, z, need to use $T_{1}(\phi) T_{2}(\theta)$
- Similar operation for $\dot{\theta}$ about $y^{\prime} \equiv y^{\prime \prime} \Rightarrow$ use $T_{1}(\phi)$ on $\left[\begin{array}{c}0 \\ \dot{\phi} \\ 0\end{array}\right]$
- Final result:

$$
\omega_{b}=\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]=T_{1}(\phi) T_{2}(\theta)\left[\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right]+T_{1}(\phi)\left[\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]
$$

- Visualization: Can write

$$
\vec{\omega}=\overrightarrow{\dot{\phi}}+\overrightarrow{\dot{\theta}}+\overrightarrow{\dot{\psi}}
$$

But $\overrightarrow{\dot{\phi}}, \overrightarrow{\dot{\theta}}, \overrightarrow{\dot{\psi}}$ do not form a mu orthogonal triad

Need to form the orthogonal p tons onto the body frame x,

$$
\omega_{b}=\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]=T_{1}(\phi) T_{2}(\theta)\left[\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right]+T_{1}(\phi)\left[\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]
$$

- Final form

$$
\begin{aligned}
\omega_{x} & =\dot{\phi}-\dot{\psi} \sin \theta \\
\omega_{y} & =\dot{\theta} \cos \phi+\dot{\psi} \cos \theta \sin \phi \\
\omega_{z} & =-\dot{\theta} \sin \phi+\dot{\psi} \cos \theta \cos \phi
\end{aligned}
$$

- With inverse:

$$
\begin{aligned}
\dot{\phi} & =\omega_{x}+\left[\omega_{y} \sin \phi+\omega_{z} \cos \phi\right] \tan \theta \\
\dot{\theta} & =\omega_{y} \cos \phi-\omega_{z} \sin \phi \\
\dot{\psi} & =\left[\omega_{y} \sin \phi+\omega_{z} \cos \phi\right] \sec \theta
\end{aligned}
$$

- Need to watch for singularities at $|\theta|= \pm 90^{\circ}$
- If we limit

$$
\begin{aligned}
0 & \leq \psi \\
-\frac{\pi}{2} \leq \theta & \leq \frac{\pi}{2} \\
0 & \leq \phi
\end{aligned}
$$

then any possible orientation of the body can be obtained by performing the appropriate rotations in the order given.

- These are a pretty standard set of Euler angles
- Theorem by Euler states that any given sequence of rotations can be represented as a single rotation about a single fixed axis
- Quaterions provide a convenient parameterization of this effective axis and the rotation angle

$$
\bar{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\left[\begin{array}{c}
\bar{E} \sin \zeta / 2 \\
\cos \zeta / 2
\end{array}\right]
$$

where \bar{E} is a unit vector and ζ is a positive rotation about \bar{E}

- Notes:
$-\|\bar{b}\|=1$ and thus there are only 3 degrees of freedom in this formulation as well
- If \bar{b} represents the rotational transformation from the reference frame a to reference frame b, the frame a is aligned with frame b when frame a is rotated by ζ radians about \bar{E}
- In terms of the Euler Angles:

$$
\begin{aligned}
\sin \theta & =-2\left(b_{2} b_{4}+b_{1} b_{3}\right) \\
\phi & =\arctan 2\left[2\left(b_{2} b_{3}-b_{1} b_{4}\right), 1-2\left(b_{1}^{2}+b_{2}^{2}\right)\right] \\
\psi & =\arctan 2\left[2\left(b_{1} b_{2}-b_{3} b_{4}\right), 1-2\left(b_{2}^{2}+b_{3}^{2}\right)\right]
\end{aligned}
$$

- Pros:
- Singularity free; Computationally efficient to do state propagation in time compared to Euler Angles
- Cons:
- Far less intuitive - less appealing
- Refs: Kuipers, Quaternions and rotation sequences, 1999 Princeton University Press.

