
16.333 Lecture 4 

Aircraft Dynamics 

Aircraft nonlinear EOM • 

• Linearization – dynamics 

Linearization – forces & moments • 

• Stability derivatives and coefficients 
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Aircraft Dynamics


•	 Note can develop good approximation of key aircraft motion (Phugoid) 
using simple balance between kinetic and potential energies. 

•	 Consider an aircraft in steady, level flight with speed U0 and height 
h0. The motion is perturbed slightly so that 

U0 U = U0 + u	 (1)→ 

h0 h = h0 + Δh	 (2)→ 

•	 Assume that E = 1 mU 2 + mgh is constant before and after the 2 
perturbation. It then follows that u ≈ −gΔh 

U0 

•	 From Newton’s laws we know that, in the vertical direction 
¨ mh = L −W 

1where weight W = mg and lift L = 2 ρSCLU 2 (S is the wing area). 
We can then derive the equations of motion of the aircraft: 

¨	 1 
mh = L −W = ρSCL(U 2 − U0

2)	 (3)
2 
1 

= ρSCL((U0 + u)2 − U0
2) ≈ 

1 
ρSCL(2uU0)(4) 

22 � � 
gΔh 

U0 = −(ρSCLg)Δh	 (5)≈ −ρSCL 
U0 

¨ ¨ Since h = Δh and for the original equilibrium flight condition L = 
1W	 = 2 (ρSCL)U 2 = mg, we get that 0 � �2

ρSCLg g
= 2 

m U0 

Combine these result to obtain: 
¨ Δh + Ω2Δh = 0 , Ω ≈	

g √
2 

U0 

•	 These equations describe an oscillation (called the phugoid oscilla

tion) of the altitude of the aircraft about it nominal value. 

– Only approximate natural frequency (Lanchester), but value close. 
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•	 The basic dynamics are: 

�̇
I	 �̇

I 
F	 = mvc and T� = H 

1 
�̇	B ω × �vc Transport Thm. F = vc	 + BI�⇒	

m

�̇
B 

BI�
⇒ T� =	H + ω × �H 

•	 Basic assumptions are: 

1. Earth is an inertial reference frame 
2. A/C is a rigid body 
3. Body frame	B fixed to the aircraft (�i,�j, 

BI�•	 Instantaneous mapping of �vc and ω into the body frame: 

BI�ω = P�i + Q�j + R�k �vc = U�i + V�j + W�k 

⎡ ⎤	 ⎡ ⎤ 
P	 U ⎦ ⇒	 BIωB = ⎣ Q ⎦ ⇒ (vc)B = ⎣ V 
R W 

•	 By symmetry, we can show that Ixy = Iyz = 0, but value of Ixz 
depends on specific frame selected. Instantaneous mapping of the 
angular momentum 

H	= Hx
�i + Hy

�j + Hz
�k 

into the Body Frame given by ⎡ ⎤ ⎡	 ⎤⎡ ⎤ 
Hx Ixx 0 Ixz P 

HB = ⎣ Hy ⎦ = ⎣ 0 Iyy 0 ⎦⎣ Q ⎦ 

Hz Ixz 0 Izz R 



�
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•	 The overall equations of motion are then: 

1 
�̇
B 

F	 = vc + BI�ω × �vc 
m ⎡ ⎤ ⎡ ⎤ ⎡	 ⎤⎡ ⎤ 
X U̇	 0 −R Q U 

⇒	
m 
⎣ Y ⎦ = ⎣ V̇ ⎦ + ⎣ 0 −P ⎦⎣ V ⎦R 

˙Z W −Q P 0 W 

⎡	 ⎤ 
U	˙ +QW − RV

˙ ⎦
= ⎣ V +RU − P W

˙
W + P V	− QU 

�̇
B 

BI�T�	 = H + ω × �H 

⎡ ⎤ ⎡ ⎤ ⎡	 ⎤⎡ ⎤⎡ ⎤˙L IxxṖ + IxzR 0 −R Q Ixx 0 Ixz P 
⇒ ⎣ M	⎦ = ⎣ 

˙
IyyQ̇ ⎦ + ⎣ 0 −P ⎦⎣ 0 Iyy 0 ⎦⎣ Q ⎦R 

P 0 Ixz 0 Izz RN IzzR + IxzṖ −Q 

⎡	 ⎤˙IxxṖ + IxzR +QR(Izz − Iyy) + P QIxz ⎦= ⎣	 IyyQ̇ +P R(Ixx − Izz ) + (R2 − P 2)Ixz 
˙IzzR + IxzṖ +P Q(Iyy − Ixx)− QRIxz 

•	 Clearly these equations are very nonlinear and complicated, and we 
have not even said where �F and T�	come from. = Need to linearize!! ⇒ 

– Assume that the aircraft is flying in an equilibrium condition and 
we will linearize the equations about this nominal flight condition. 
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Axes


•	 But first we need to be a little more specific about which Body Frame 
we are going use. Several standards: 

1. Body Axes  X aligned with fuselage nose. Z perpendicular to 
X in plane of symmetry (down). Y perpendicular to XZ plane, to 
the right. 

2. Wind Axes  X aligned with �vc. Z perpendicular to X (pointed 
down). Y perpendicular to XZ plane, off to the right. 

3. Stability Axes  X aligned with projection of �vc into the fuselage 
plane of symmetry. Z perpendicular to X (pointed down). Y same. 

R E LATIVE WIND 
( ) 

( ) 

( ) 

� 

� 

B ODY 
Z-AXIS 

B ODY 
Y -AXIS 

X-AXIS 
WIND

X-AXIS 
S T AB ILIT Y 

X-AXIS 
B ODY 

•	 Advantages to each, but typically use the stability axes. 

– In different flight equilibrium conditions, the axes will be oriented 
differently with respect to the A/C principal axes ⇒ need to trans

form (rotate) the principal inertia components between the frames. 

– When vehicle undergoes motion with respect to the equilibrium, 
Stability Axes remain fixed to airplane as if painted on. 
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•	 Can linearize about various steady state conditions of flight. 

– For steady state flight conditions must have 

F Faero + � Fthrust = 0 and T� = 0 �	 = � Fgravity + �

3 So for equilibrium condition, forces balance on the aircraft 
L = W and T = D 

˙ ˙ ˙ ˙ ˙– Also assume that Ṗ = Q = R = U = V = W = 0 

– Impose additional constraints that depend on flight condition: 

3 Steady wingslevel flight → Φ = ˙ Θ = ˙Φ = ˙ Ψ = 0 

•	 Key Point: While nominal forces and moments balance to zero, 
motion about the equilibrium condition results in perturbations to 
the forces/moments. 

– Recall from basic flight dynamics that lift Lf = CLα α0 where: 0 

3 CLα = lift curve slope – function of the equilibrium condition 
3 α0 = nominal angle of attack (angle that wing meets air flow) 

– But, as the vehicle moves about the equilibrium condition, would 
expect that the angle of attack will change 

α	= α0 + Δα 

– Thus the lift forces will also be perturbed 

Lf	 = CLα (α0 + Δα) = Lf + ΔLf 
0 

•	 Can extend this idea to all dynamic variables and how they influence 
all aerodynamic forces and moments 
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Gravity Forces 

•	 Gravity acts through the CoM in vertical direction (inertial frame +Z) 

– Assume that we have a nonzero pitch angle Θ0 

– Need to map this force into the body frame 

– Use the Euler angle transformation (2–15) ⎡ ⎤ ⎡	 ⎤ 
0 − sin Θ 

Fg = T1(Φ)T2(Θ)T3(Ψ) ⎣ 0 ⎦ = mg ⎣ sin Φ cos Θ ⎦ 
B 

mg	 cos Φ cos Θ 

•	 For symmetric steady state flight equilibrium, we will typically assume 
that Θ ≡ Θ0, Φ ≡ Φ0 = 0, so ⎡ ⎤ 

− sin Θ0 

Fg = mg ⎣ 0 ⎦ 
B 

cos Θ0 

•	 Use Euler angles to specify vehicle rotations with respect to the Earth 
frame 

Θ̇ = Q cos Φ − R sin Φ 

Φ̇ = P + Q sin Φ tan Θ + R cos Φ tan Θ 

Ψ̇ = (Q sin Φ + R cos Φ) sec Θ 

– Note that if Φ ≈ 0, then Θ̇ ≈ Q 

•	 Recall: Φ ≈ Roll, Θ ≈ Pitch, and Ψ ≈ Heading. 
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Linearization 

• Define the trim angular rates and velocities ⎡ ⎤ ⎡ ⎤ 
P Uo 

BIωo = ⎣ Q ⎦ (vc)
o = ⎣ 0 ⎦ 

B B 

R 0 

which are associated with the flight condition. In fact, these define 
the type of equilibrium motion that we linearize about. Note: 

– W0 = 0 since we are using the stability axes, and 

– V0 = 0 because we are assuming symmetric flight 

• Proceed with linearization of the dynamics for various flight conditions 

Nominal Perturbed Perturbed ⇒
Velocity Velocity Acceleration⇒ 

Velocities U0, U = U0 + u U̇ = u̇⇒ 
˙W0 = 0, W = w W = ẇ

V0 = 0, V = v 
⇒ 

V̇ = v̇⇒ 

Angular P0 = 0,

Rates Q0 = 0,


R0 = 0,


P = p Ṗ = ṗ 
Q = q 

⇒ 
Q̇ = q̇ 

R = r 
⇒ 

Ṙ = ṙ⇒ 

˙Angles Θ0, Θ = Θ0 + θ Θ = θ̇⇒ 
˙Φ0 = 0, Φ = φ Φ = φ̇⇒ 
˙Ψ0 = 0, Ψ = ψ Ψ = ψ̇⇒ 



�
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W C.G. 

0
VT 

VT0 
= U0 

XE 

X0 

X 

q 

� 

Z 

Z0 ZE 

� 

Θ 

� 

or 

�0 

�0 �0 

Horizontal 

U = U + u 

Down 

Figure 1: Perturbed Axes. The equilibrium condition was that the aircraft was angled up by Θ0 with 
velocity VT 0 = U0. The vehicle’s motion has been perturbed (X0 → X) so that now Θ = Θ0 +θ and 
the velocity is VT = VT 0. Note that VT is no longer aligned with the Xaxis, resulting in a nonzero 
u and w. The angle γ is called the flight path angle, and it provides a measure of the angle of the 
velocity vector to the inertial horizontal axis. 
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• Linearization for symmetric flight 
U = U0 + u, V0 = W0 = 0, P0 = Q0 = R0 = 0. 

Note that the forces and moments are also perturbed. 

1 
[X0 + ΔX ] = U̇ +QW − RV u̇ + qw − rv ≈ u̇

m	
≈ 

1 
[Y0 + ΔY ] = V̇ +RU − P W 

m 
v̇ + r(U0 + u)− pw v̇ + rU0≈	 ≈ 

1 ˙[Z0 + ΔZ] = W + P V − QU ẇ + pv − q(U0 + u) 
m 

≈


ẇ − qU0
≈ ⎡ ⎤ ⎡ ⎤ 
ΔX	 u̇ 1 

1 ⎣ ΔY ⎦ = ⎣ v̇	+ rU0 ⎦ 2⇒ 
m 

ΔZ ẇ − qU0 3 

Attitude motion: • ⎡ ⎤ ⎡	 ⎤˙L IxxṖ + IxzR +QR(Izz − Iyy) + P QIxz ⎦⎣ M ⎦ = ⎣	 IyyQ̇ +P R(Ixx − Izz ) + (R2 − P 2)Ixz 
˙N IzzR + IxzṖ +P Q(Iyy − Ixx)− QRIxz ⎡ ⎤ ⎡	 ⎤ 

ΔL Ixxṗ + Ixzṙ 4
⎣ ΔM ⎦ = ⎣ Iyyq̇ ⎦ 5
⇒ 
ΔN Izzṙ	+ Ixzṗ 6 
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•	 Key aerodynamic parameters are also perturbed: 

Total Velocity 
2 2)1/2 ≈ U0 + uVT = ((U0 + u)2 + v + w 

Perturbed Sideslip angle 

β	 = sin−1(v/VT ) ≈ v/U0 

Perturbed Angle of Attack 

αx = tan−1(w/U) ≈ w/U0 

• To understand these equations in detail, and the resulting impact on 
the vehicle dynamics, we must investigate the terms ΔX . . . ΔN . 

– We must also address the lefthand side ( �F ,	T�) 

– Net forces and moments must be zero in equilibrium condition. 

– Aerodynamic and Gravity forces are a function of equilibrium con

dition AND the perturbations about this equilibrium. 

•	 Predict the changes to the aerodynamic forces and moments using a 
first order expansion in the key flight parameters 

∂X ∂X ∂X ∂X	 ∂Xg 

ΔX = ΔU + ΔW + ΔẆ + ΔΘ + . . . + ΔΘ + ΔXc 

∂U ∂W ∂ Ẇ ∂Θ ∂Θ 
∂X ∂X ∂X ∂X ∂Xg 

˙= u + w + w + θ + . . . + θ + ΔXc 

∂U ∂W ∂ Ẇ ∂Θ	 ∂Θ 

•	 ∂X called stability derivative – evaluated at eq. condition. ∂U 

•	 Gives dimensional form; nondimensional form available in tables. 

•	 Clearly approximation since ignores lags in the aerodynamics forces 
(assumes that forces only function of instantaneous values) 
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Stability Derivatives


•	 First proposed by Bryan (1911) – has proven to be a very effec

tive way to analyze the aircraft flight mechanics – well supported by 
numerous flight test comparisons. 

•	 The forces and torques acting on the aircraft are very complex nonlin

ear functions of the flight equilibrium condition and the perturbations 
from equilibrium. 

– Linearized expansion can involve many terms u, ˙ u, . . . , w, ˙ w, . . . u, ¨ w, ¨

– Typically only retain a few terms to capture the dominant effects. 

•	 Dominant behavior most easily discussed in terms of the: 

– Symmetric variables: U , W , Q & forces/torques: X, Z, and M 

– Asymmetric variables: V , P , R & forces/torques: Y , L, and N 

•	 Observation – for truly symmetric flight Y , L, and N will be exactly 
zero for any value of U , W , Q 

⇒ Derivatives of asymmetric forces/torques with respect to the sym

metric motion variables are zero. 

•	 Further (convenient) assumptions: 

1. Derivatives of symmetric forces/torques with respect to the asym

metric motion variables are small and can be neglected. 

2. We can neglect derivatives with respect to the derivatives of the 
motion variables, but keep ∂Z/∂ẇ and Mẇ ≡ ∂M/∂ẇ (aero

dynamic lag involved in forming new pressure distribution on the 
wing in response to the perturbed angle of attack) 

3.	∂X/∂q is negligibly small. 
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∂()/∂() X Y Z L M N 

u 
v 
w 
p 
q 
r 

• 
0 
• 
0 
≈ 0 
0 

0 
• 
0 
• 
0 
• 

• 
0 
• 
0 
• 
0 

0 
• 
0 
• 
0 
• 

• 
0 
• 
0 
• 
0 

0 
• 
0 
• 
0 
• 

• Note that we must also find the perturbation gravity and thrust forces 
and moments 

∂Xg


∂Θ

∂Zg


= −mg cos Θ0 
0 ∂Θ


= −mg sin Θ0 
0 

• Aerodynamic summary: 

1A ΔX = ∂X 
∂U 0 u + ∂X 

∂W 0 w ⇒ ΔX ∼ u, αx ≈ w/U0 

2A ΔY ∼ β ≈ v/U0, p, r 

3A ΔZ ∼ u, αx ≈ w/U0, α̇x ≈ ẇ/U0, q 

4A ΔL ∼ β ≈ v/U0, p, r 

5A ΔM ∼ u, αx ≈ w/U0, α̇x ≈ ẇ/U0, q 

6A ΔN ∼ β ≈ v/U0, p, r 
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•	 Result is that, with these force, torque approximations, 
equations 1, 3, 5 decouple from 2, 4, 6 

– 1, 3, 5 are the longitudinal dynamics in u, w, and q 

⎤⎡⎤⎡ 
ΔX	 mu̇

ΔZ ⎦
 =
 ⎣
m( ẇ − qU0) ⎦


ΔM	 Iyyq̇
 ⎤⎡ 
∂Xg∂X ∂X θ + ΔXcu + w +
∂U ∂W ∂Θ0 0 0⎢⎢⎢⎢⎢⎣


∂Zg∂Z ∂Z ∂Z ∂Z w + θ + ΔZc˙u + w + q +≈ ∂ Ẇ∂U ∂W ∂Q ∂Θ0 0 00
 0 

∂M ∂M ∂M ẇ + ∂M q + ΔMcu + w +∂U 0 ∂W 0 ∂ Ẇ	 0 ∂Q 0 

– 2, 4, 6 are the lateral dynamics in v, p, and r 

⎤⎡⎤⎡ 
ΔY m(v̇ + rU0)
⎣
 ΔL
⎦
 =
 ⎣
 Ixxṗ + Ixzṙ
⎦


ΔN Izzṙ + Ixzṗ
 ⎤⎡ 

≈


⎢⎢⎢⎢⎣


∂Y ∂Y ∂Y v + 
0 p + r + +ΔY c 

∂V	 0 ∂P ∂R 0 

∂L v + ∂L 
0 p + ∂L r + ΔLc ∂V	 0 ∂P ∂R 0 

⎥⎥⎥⎥⎦ 

⎣ 

⎥⎥⎥⎥⎥⎦


∂N ∂N ∂N v + 
0 p + r + ΔNc 

∂V	 0 ∂P ∂R 0 
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Basic Stability Derivative Derivation


•	 Consider changes in the drag force with forward speed U 

D = 1/2ρVT 
2SCD 

2 2V 2 = (u0 + u)2 + v + wT 

∂VT 
2	 ∂VT 

2 

= 2(u0 + u) ⇒	 = 2u0
∂u	 ∂u 0 

∂VT 
2	 ∂VT 

2 

Note:	 = 0 and = 0 
∂v 0	 ∂w 0 

At reference condition: � � � � �� 
∂D ∂ ρVT 

2SCD 
= ⇒	Du ≡ 

∂u 0 ∂u 2 � 0� �	 � � � 
ρS 2 ∂CD	 ∂VT 

2 

= u0	 + CD02 ∂u 0	 ∂u 0 

ρS 2 ∂CD 
=	 + 2u0CD0u02 ∂u 0 

– Note ∂D is the stability derivative, which is dimensional.∂u 

•	 Define nondimensional stability coefficient CDu as derivative of 
CD with respect to a nondimensional velocity u/u0 

D	 ∂CD 
and CD0 ≡ (CD)0CD = 1 ρVT 

2S 
⇒ CDu	≡ 

∂u/u02	 0 

– So ( 0 corresponds to the variable at its equilibrium condition. •)
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Nondimensionalize: • � � � � � � 
∂D ρSu0 ∂CD 

= u0 + 2CD0∂u 0 2 ∂u 0 

QS ∂CD 
= + 2CD0 u0 ∂u/u0 0� � � � 

u0 ∂D 
= (CDu + 2CD0 )QS ∂u 0 

So given stability coefficient, can compute the drag force increment. 

• Note that Mach number has a significant effect on the drag: � � � � 

CDu = 
∂CD 

∂u/u0 0 

= 
u0 

a 
∂CD 

∂ 
� 
u 
a 

� 
0 

= M 
∂CD 

∂M 

where ∂CD 

∂M can be estimated from empirical results/tables. 

Aerodynamic Principles 

� = Constant 

CD 

0 
Mcr0 1 2 

= 0.1
CD 

M 

Mach number, M 

• Thrust forces � � � � 

CTu = 
∂CT 

∂u/u0 0 

⇒ 
∂T 
∂u 0 

= CTu 

1 
u0 
QS 

– For a glider, CTu = 0 

– For a jet, CTu ≈ 0 

– For a prop plane, CTu = −CD0 
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•	 Lift forces similar to drag 

L = 1/2ρVT 
2SCL � �	 � � � � 

∂L ρSu0 ∂CL 
=	 + 2CL0⇒ 

∂u 0 2 
u0 

∂u 0 � 
QS ∂CL 

=	 + 2CL0 u0 ∂u/u0 0 � � � � 
u0 ∂L 

=	 (CLu + 2CL0 )QS ∂u 0 

where CL0 is the lift coefficient for the eq. condition and CLu = 
M ∂CL 

∂M as before. From aerodynamic theory, we have that 

∂CL MCL|M=0CL =	 = CL√
1− M2 

⇒ 
∂M 1− M2 

M2 

⇒	CLu =
1− M2 

CL0 

•	 α Derivatives: Now consider what happens with changes in the angle 
of attack. Take derivatives and evaluate at the reference condition: 

– Lift: ⇒	CLα 

C2 
L	 2CL0 – Drag: CD = CDmin + 

πeAR 
⇒ CDα = 

πeAR
CLα 
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• Combine into X, Z Forces 

– At equilibrium, forces balance. 

– Use stability axes, so α0 = 0 

– Include the effect in the force balance of a change in α on the 
force rotations so that we can see the perturbations. 

– Assume perturbation α is small, so rotations are by cos α ≈ 1, 
sin α ≈ α 

X	 = T − D + Lα 

Z = −(L + Dα) 

CL 

Cx 

Cz 

z 

x 

V 

Note: � = �T at t = 0 

CD 

��(t) 

(i.e., Static Trim) 

•	 So, now consider the α derivatives of these forces: 
∂X ∂T ∂D ∂L 

=	 + L + α 
∂α ∂α 

− 
∂α ∂α 

∂T 
– Thrust variation with α very small 

∂α 0 

≈ 0 

– Apply at the reference condition (α = 0), i.e. CXα 

• Nondimensionalize and apply reference condition: 

CXα = −CDα + CL0 

2CL0 = CL0 − CLαπeAR 

∂CX 
= 

∂α 0 
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And for the Z direction • 
∂Z	 ∂D ∂L 

= D − α 
∂α 

−
∂α 

−
∂α 

Giving 
CZα = CD0 − CLα−

•	 Recall that CMα was already found during the static analysis 

•	 Can repeat this process for the other derivatives with respect to the 
forward speed. 

•	 Forward speed: 
∂X ∂T ∂D ∂L 

=	 + α 
∂u ∂u 

−
∂u ∂u 

So that� �� � � �� � � �� � 
u0 ∂X	 u0 ∂T u0 ∂D 

= 
QS ∂u 0 QS ∂u 0 

− 
QS ∂u 0 

⇒ CXu ≡ CTu − (CDu + 2CD0 ) 

•	 Similarly for the Z direction: 

∂Z ∂L ∂D 
= α 

∂u 
−
∂u 
−

∂u 
So that � �� � � �� � 

u0 ∂Z	 u0 ∂L 
= 

QS ∂u 0 

− 
QS ∂u 0 

(CLu + 2CL0 )CZu ≡ −

M2 

= −
1−M2 

CL0 − 2CL0 

•	 Many more derivatives to consider ! 
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Summary


•	 Picked a specific Body Frame (stability axes) from the list of alter
natives 

⇒ Choice simplifies some of the linearization, but the inertias now 
change depending on the equilibrium flight condition. 

•	 Since the nonlinear behavior is too difficult to analyze, we needed 
to consider the linearized dynamic behavior around a specific flight 
condition 

⇒	Enables us to linearize RHS of equations of motion. 

•	 Forces and moments also complicated nonlinear functions, so we lin

earized the LHS as well 

⇒ Enables us to write the perturbations of the forces and moments 
in terms of the motion variables. 

– Engineering insight allows us to argue that many of the stability 
derivatives that couple the longitudinal (symmetric) and lateral 
(asymmetric) motions are small and can be ignored. 

•	 Approach requires that you have the stability derivatives. 

– These can be measured or calculated from the aircraft plan form 
and basic aerodynamic data. 
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