
16.333 Lecture # 8


Aircraft Lateral Dynamics 

Spiral, Roll, and Dutch Roll Modes 
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Fall 2004	 16.333 7–1 
Aircraft Lateral Dynamics


•	 Using a procedure similar to the longitudinal case, we can develop 
the equations of motion for the lateral dynamics ⎤⎡ 

v
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Lateral Stability Derivatives 

• A key to understanding the lateral dynamics is rollyaw coupling. 

• Lp rolling moment due to roll rate: 

– Roll rate p causes right to move wing down, left wing to move up 
→ Vertical velocity distribution over the wing W = py 

– Leads to a spanwise change in the AOA: αr(y) = py/U0 

– Creates lift distribution (chordwise strips) 

1 
δLw(y) = ρU0

2Clα αr(y)cydy2 
– Net result is higher lift on right, lower on left 

– Rolling moment: 
b/2 b/2 

L = δLw(y)·(−y)dy = −
2

1 
ρU0

2 

−b/2 
Clα 

py2 

cydy ⇒ Lp < 0 
−b/2 U0 

– Key point: positive roll rate ⇒ negative roll moment. 

• Lr rolling moment due to yaw rate: 

– Positive r has left wing advancing, right wing retreating 
→ Horizontal velocity distribution over wing U = U0 − ry 

– Creates lift distribution over wing (chordwise strips) 

1 1 
Lw(y) ∼ ρU 2Clcdy ≈ ρ(U0

2 − 2U0ry)Clcydy
2 2 

– Net result is higher lift on the left, lower on the right. 
b/2 b/2 

– Rolling Moment: L = Lw(y)·(−y)dy ≈ ρU0r Clcyy 2dy 
−b/2 −b/2 

– For large aspect ratio rectangular wing (crude) 

1 1 
Lr ≈ ( to )CL > 0 

6 4

– Key point: positive yaw rate ⇒ positive roll moment. 
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• Np yawing moment due to roll rate: 

– Rolling wing induces a change in spanwise AOA, which changes 
the spanwise lift and drag. 

– Distributed drag change creates a yawing moment. Expect higher 
drag on right (lower on left) → positive yaw moment 

– There is both a change in the lift (larger on downward wing be

cause of the increase in α) and a rotation (leans forward on down

ward wing because of the larger α). → negative yaw moment 

– In general hard to know which effect is larger. Nelson suggests 
that for a rectangular wing, crude estimate is that 

1 
Np ≈ ρU0

2Sb(− 
CL 

) < 0 
2 8 

• Nr yawing moment due to yaw rate: 

– Key in determining stability properties – mostly from fin. 

– Positive r has fin moving to the left which increases the apparent 
angle of attack by 

rlf
Δαf = 

(U0)f 

– Creates increase in lift at the tail fin by 
1 

ΔLf = ρ(U0
2)fSfCLαf 

Δαf
2 

– Creates a change in the yaw moment of 
1 

N = −lf ΔLf = −
2 
ρ(U0)fSfCLαf 

rl2 
f 

1 – So Nr = 2 ρ(U0)fSfCLαf 
lf 
2 < 0−

– Key point: positive yaw rate ⇒ negative yaw moment. 

L N 

p < 0 ? 
r > 0 < 0 
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Numerical Results


•	 The code gives the numerical values for all of the stability derivatives. 
Can solve for the eigenvalues of the matrix A to find the modes of 
the system. 

−0.0331 ± 0.9470i 

−0.5633 

−0.0073 

– Stable, but there is one very slow pole. 

•	 There are 3 modes, but they are a lot more complicated than the 
longitudinal case. 

Slow mode 0.0073 ⇒ Spiral Mode 
Fast real 0.5633 ⇒ Roll Damping 
Oscillatory −0.0331 ± 0.9470i Dutch Roll ⇒ 

Can look at normalized eigenvectors: 

Spiral Roll Dutch Roll 

β = w/U0 0.0067 0.0197 0.3269 28◦ 

p̂ = p/(2U0/b) 0.0009 0.0712 0.1198 92◦ 

r̂ = r/(2U0/b) 0.0052 0.0040 0.0368 112◦ 

φ 1.0000 1.0000 1.0000 0◦ 

Not as enlightening as the longitudinal case.
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Lateral Modes 

Roll Damping  well damped. 

– As the plane rolls, the wing going down has an increased α

(wind is effectively “coming up” more at the wing)


– Opposite effect for other wing. 

– There is a difference in the lift generated by both wings 
→ more on side going down 

– The differential lift creates a moment that tends to restore the 
equilibrium. Recall that Lp < 0 

– After a disturbance, the roll rate builds up exponentially until the 
restoring moment balances the disturbing moment, and a steady 
roll is established. 

py 

V0 

-py − �' �' 

Roll 
Rate 
p

Disturbing rolling moment
Restoring rolling moment 

V0 
Port wing Starboard wing 

Reduction in incidence Reduction in incidence 
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Spiral Mode  slow, often unstable. 

– From level flight, consider a disturbance that creates a small roll 
angle φ > 0 → This results in a small sideslip v (vehicle slides 
downhill) 

– Now the tail fin hits on the oncoming air at an incidence angle β 
→ extra tail lift → positive yawing moment 

– Moment creates positive yaw rate that creates positive roll mo

ment (Lr > 0) that increases the roll angle and tends to increase 
the sideslip 
→ makes things worse. 

– If unstable and left unchecked, the aircraft would fly a slowly 
diverging path in roll, yaw, and altitude ⇒ it would tend to spiral 
into the ground!! 

• Can get a restoring torque from the wing dihedral 

• Want a small tail to reduce the impact of the spiral mode. 
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Dutch Roll  damped oscillation in yaw, that couples into roll. 

•	 Frequency similar to longitudinal short period mode, not as well 
damped (fin less effective than horizontal tail). 

•	 Consider a disturbance from straightlevel flight 

→	Oscillation in yaw ψ (fin provides the aerodynamic stiffness) 

→ Wings moving back and forth due to yaw motion result in oscil

latory differential lift/drag (wing moving forward generates more 
lift) Lr > 0 

→	Oscillation in roll φ that lags ψ by approximately 90◦ 

⇒	 Forward going wing is low


Oscillating roll ⇒ sideslip in direction of low wing.
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• Do you know the origins on the name of the mode? 

• Damp the Dutch roll mode with a large tail fin. 
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Aircraft Actuator Influence 
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Figure 1: Aileron impulse to flight variables. Response primarily in φ. 

• Transfer functions dominated by lightly damped Dutchroll mode. 

• Note the rudder is physically quite high, so it also influences the A/C roll. 

• Ailerons influence the Yaw because of the differential drag 
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Figure 2: Aileron impulse to flight variables. Response primarily in φ.
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Figure 3: Aileron impulse to flight variables 

• Aileron δa =1deg impulse for 2 sec. 

– Since δa > 0 then right aileron goes down, and right wing goes up → Reid’s 
notation, and it is not consistent with the picture on 6–4 (from Nelson). 

– Influence of the roll mode seen in the response of p to application and release 
of the aileron input. 

– See effect of adverse yaw in the yaw rate response caused by the differential drag 
due to aileron deflection. 

– Spiral mode harder to see. 

– Dutch mode response in other variables clear (1 rad/sec ∼ 6 sec period). 
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Figure 4: Rudder step to flight variables 

• Rudder step input 1deg step. 

– Dutch roll response very clear. Other 2 modes are much less pronounced. 

– β shows a very lightly damped decay. 

– p clearly excited as well. Doesn’t show it, but often see evidence of adverse roll 
in p response where initial p is opposite sign to steady state value. Reason is 
that the forces act on the fin which is well above the cg → and the aircraft 
responds rapidly (initially) in roll. 

– φ ultimately oscillates around 2.5◦ 
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