
MIT OpenCourseWare 
http://ocw.mit.edu 

16.346 Astrodynamics 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Lecture 21 Space Navigation —The Position Fix Chapter 13


The Line of Position 

ir · i� 1 = − cos A1 = ⇒ i r = α i + β i� 2 + γ i� 1 × i
i · i = − cos � 1 � 2
r � 2 A2 

where 
α sin2 ϕ = cos A2 cos ϕ − cos A1 

β sin2 ϕ = cos A1 cos ϕ − cos A2 

γ2 sin2 ϕ = 1 +  α cos A1 + β cos A2 

and cos ϕ = i� 1 · i� 2 

The Position Fix 

i i� 1 = − cos A1r · 
i i� 2 = − cos A2r · 
ir · rp = r − |rp − r| cos A3 

where r p is the position vector of a planet or other near object. 

Henceforth, we will linearize the measurements so that we can deal with a set of redundant 
measurements using Gauss’s Method of Least Squares. 
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Fig. 13.1 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.
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Determining the Measurement Geometry Vector #13.2 

For an arbitrary angle A(r), we calculate the measurement geometry vector h from the 
Taylor Series expansion about a reference position r0 and discarding all terms of higher 
order in δr :


∂A 
A(r) =  A(r0) +  

∂r

δr + = A0 + hT δr +· · ·  · · ·  

r=r0 

Hence

∂A 

δA = hT δr where hT = 
∂r r=r0 

Measuring the Angle between a Near Object and a Star 

The angle between the line-of-sight to a near object, e.g., the sun or a planet, and the 
line-of-sight to a distant star is defined by 

r cos A = −i� 
T r 

from which 
∂r ∂A 
∂r 

cos A − r sin A
∂r 

= −i� 
T 

The derivative of the scalar r with respect to the vector r is obtained from 

∂r ∂r ∂r 1 
r 2 = r r = rT r = 2r = 2rT = 2rT I = = rT = iT · ⇒ 

∂r ∂r 
⇒ 

∂r r r 

Therefore, 
1

h = (cos A i + i�) r sin A r or

1

h = i n r 

The vector i n is a unit vector in the plane of the measurement and perpendicular to the 
line-of-sight to the near object. 

Measuring the Angle between Two Near Objects 

The angle between the two position vectors r and d produces the measurement equation 

dT r = dr cos A 

Since r − d = constant, then δd = δr . Again, from d2 = dT d , we  have  

∂d ∂d
2d = 2dT I or = id 

T 

∂r ∂r 
Hence: 

1 1
h = −

r sin A
(id − cos A ir ) − 

d sin A
(ir − cos A id) or
 1 1

h = i + i
r n d m 

Both i n and i m are unit vectors in the plane determined by the spacecraft and the two 
near bodies. 
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The Measurement Geometry Matrix 

For several measurements we define 

H = [h1 h2 h ] so that δq = HT δr· · ·  n

where
 ⎡
δq1 
⎤ ⎡ 


δq
q


2 
δ =
 . . . 

⎤⎢⎢⎣

δqn 

⎥⎥ δx⎦
 and
 ∂r
=
⎣
δy

δz


⎦

Gauss’ Method of Least Squares #13.5 

Given mij and ci : To determine xi so that � n

mij xj = ci where i = 1, 2, . . . , N  > n  
j=1 

is “as nearly satisfied as possible.” 
n

•	 Define: Residuals ei = 
� 

mij xj − ci

j=1 

• Choose: Weighting factor wi i th 
 > 0 for residual


•	 Determine: x , x2, . . . , x that w1e
2 

1 n so 1 + w · · · 2 
2e

2 
2 + + wN eN is a minimum. 

Solution of Least Squares Problem 

Vector of residuals: = Mx − ce
•


=


⎡ ⎢⎢⎣

⎤
w1 0 0· · ·  

0 w2 0· · · ⎥⎥⎦
Weighting matrix: W• = WT . . . .
. .
 . ... .
 .

0 0 wN· · ·  

Weighted squares: • 

eT We = (xT MT − cT )W(Mx − c) =  xT MT WMx − cT WMx − xT MT Wc + cT Wc 

Least value of the weighted squares: • 

∂ 
(eT We) = 2xT MT WM − 2cT WM = 0T or MT WMx = MT Wc 

∂x

x = (MT WM)−1MT Wc 

∂y
Note: If y = xT Bx = (xT Bx)T = xT BT x then = xT BI + xT BT I 

∂x 
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The Information Matrix 

The matrix P−1 is called the Information Matrix because of the property 

1 T h1h
T 

1 h hT 

HA− H = + 2 2 + 
σ2 σ2 · · ·  

1 2 

Each new measurement adds a new term to the series and each term contains al
information about the new measurement. 

� N h T 

ihP−1 = HA−1HT = i 

σ2 
i i=1 

The factor σ2

i is called the variance. The larger the i th variance the less weight is 

to the i th measurement.
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Application of Gauss’ Method of Least Squares to Space Navigation 

x = (MT WM)−1MT Wc 

In our notation 
1 

x = δ�r MT = H W = A−1 wi = 
σ2 c = δq�

i 

so that 

F is called the Estimator Matrix where 

δ�r = F δq�


F = PHA−1 and
 P = (HA−1HT )−1 

The deviation from the reference position is an estimate, denoted by the “hat” over the 
position vector 

δ�r = δr + ε


and is the sum of the actual deviation and the error in the estimate. Similarly,


δq� = δq + α


where α is the vector error in the determination of the quantities measured. (The vector 
δq is the actual deviation in those quantities from their reference values.) 

l the 

given 




