MIT OpenCourseWare
http://ocw.mit.edu

### 16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 21


The Line of Position

$$
\begin{aligned}
& \mathbf{i}_{r} \cdot \mathbf{i}_{\star 1}=-\cos A_{1} \\
& \mathbf{i}_{r} \cdot \mathbf{i}_{\star 2}=-\cos A_{2}
\end{aligned} \quad \Longrightarrow \quad \mathbf{i}_{r}=\alpha \mathbf{i}_{\star 1}+\beta \mathbf{i}_{\star 2}+\gamma \mathbf{i}_{\star 1} \times \mathbf{i}_{\star 2}
$$

where

$$
\begin{aligned}
\alpha \sin ^{2} \varphi & =\cos A_{2} \cos \varphi-\cos A_{1} \\
\beta \sin ^{2} \varphi & =\cos A_{1} \cos \varphi-\cos A_{2} \\
\gamma^{2} \sin ^{2} \varphi & =1+\alpha \cos A_{1}+\beta \cos A_{2}
\end{aligned}
$$

and $\cos \varphi=\mathbf{i}_{\star 1} \cdot \mathbf{i}_{\star 2}$
The Position Fix

$$
\begin{aligned}
\mathbf{i}_{r} \cdot \mathbf{i}_{\star 1} & =-\cos A_{1} \\
\mathbf{i}_{r} \cdot \mathbf{i}_{\star 2} & =-\cos A_{2} \\
\mathbf{i}_{r} \cdot \mathbf{r}_{p} & =r-\left|\mathbf{r}_{p}-\mathbf{r}\right| \cos A_{3}
\end{aligned}
$$

where $\mathbf{r}_{p}$ is the position vector of a planet or other near object.
Henceforth, we will linearize the measurements so that we can deal with a set of redundant measurements using Gauss's Method of Least Squares.

For an arbitrary angle $A(\mathbf{r})$, we calculate the measurement geometry vector $\mathbf{h}$ from the Taylor Series expansion about a reference position $\mathbf{r}_{0}$ and discarding all terms of higher order in $\delta r$ :

$$
A(\mathbf{r})=A\left(\mathbf{r}_{0}\right)+\left.\frac{\partial A}{\partial \mathbf{r}}\right|_{\mathbf{r}=\mathbf{r}_{0}} \delta \mathbf{r}+\cdots=A_{0}+\mathbf{h}^{\mathrm{T}} \delta \mathbf{r}+\cdots
$$

Hence

$$
\delta A=h^{\mathrm{T}} \delta \mathbf{r} \quad \text { where } \quad \mathbf{h}^{\mathrm{T}}=\left.\frac{\partial A}{\partial \mathbf{r}}\right|_{\mathbf{r}=\mathbf{r}_{0}}
$$

Measuring the Angle between a Near Object and a Star
The angle between the line-of-sight to a near object, e.g., the sun or a planet, and the line-of-sight to a distant star is defined by

$$
r \cos A=-\mathbf{i}_{\star}^{\mathrm{T}} \mathbf{r}
$$

from which

$$
\frac{\partial r}{\partial \mathbf{r}} \cos A-r \sin A \frac{\partial A}{\partial \mathbf{r}}=-\mathbf{i}_{\star}^{\mathrm{T}}
$$

The derivative of the scalar $r$ with respect to the vector $\mathbf{r}$ is obtained from

$$
r^{2}=\mathbf{r} \cdot \mathbf{r}=\mathbf{r}^{\mathrm{T}} \mathbf{r} \quad \Longrightarrow \quad 2 r \frac{\partial r}{\partial \mathbf{r}}=2 \mathbf{r}^{\mathbf{T}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}}=2 \mathbf{r}^{\mathrm{T}} \mathbf{I} \quad \Longrightarrow \quad \frac{\partial r}{\partial \mathbf{r}}=\frac{1}{r} \mathbf{r}^{\mathrm{T}}=\mathbf{i}_{r}^{\mathrm{T}}
$$

Therefore,

$$
\mathbf{h}=\frac{1}{r \sin A}\left(\cos A \mathbf{i}_{r}+\mathbf{i}_{\star}\right) \quad \text { or } \quad \mathbf{h}=\frac{1}{r} \mathbf{i}_{n}
$$

The vector $\mathbf{i}_{n}$ is a unit vector in the plane of the measurement and perpendicular to the line-of-sight to the near object.

Measuring the Angle between Two Near Objects
The angle between the two position vectors $\mathbf{r}$ and $\mathbf{d}$ produces the measurement equation

$$
\mathbf{d}^{\mathrm{T}} \mathbf{r}=d r \cos A
$$

Since $\quad \mathbf{r}-\mathbf{d}=$ constant, then $\delta \mathbf{d}=\delta \mathbf{r}$. Again, from $d^{2}=\mathbf{d}^{\mathrm{T}} \mathbf{d}$, we have

$$
2 d \frac{\partial d}{\partial \mathbf{r}}=2 \mathbf{d}^{\mathrm{T}} \mathbf{I} \quad \text { or } \quad \frac{\partial d}{\partial \mathbf{r}}=\mathbf{i}_{d}^{\mathrm{T}}
$$

Hence:

$$
\mathbf{h}=-\frac{1}{r \sin A}\left(\mathbf{i}_{d}-\cos A \mathbf{i}_{r}\right)-\frac{1}{d \sin A}\left(\mathbf{i}_{r}-\cos A \mathbf{i}_{d}\right) \quad \text { or } \quad \mathbf{h}=\frac{1}{r} \mathbf{i}_{n}+\frac{1}{d} \mathbf{i}_{m}
$$

Both $\mathbf{i}_{n}$ and $\mathbf{i}_{m}$ are unit vectors in the plane determined by the spacecraft and the two near bodies.

The Measurement Geometry Matrix
For several measurements we define

$$
\mathbf{H}=\left[\begin{array}{llll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \cdots & \mathbf{h}_{n}
\end{array}\right] \quad \text { so that } \quad \delta \mathbf{q}=\mathbf{H}^{\mathbf{T}} \delta \mathbf{r}
$$

where

$$
\delta \mathbf{q}=\left[\begin{array}{c}
\delta q_{1} \\
\delta q_{2} \\
\vdots \\
\delta q_{n}
\end{array}\right] \quad \text { and } \quad \partial \mathbf{r}=\left[\begin{array}{c}
\delta x \\
\delta y \\
\delta z
\end{array}\right]
$$

Gauss' Method of Least Squares
Given $m_{i j}$ and $c_{i}$ : To determine $x_{i}$ so that

$$
\sum_{j=1}^{n} m_{i j} x_{j}=c_{i} \quad \text { where } \quad i=1,2, \ldots, N>n
$$

is "as nearly satisfied as possible."

- Define: Residuals $e_{i}=\sum_{j=1}^{n} m_{i j} x_{j}-c_{i}$
- Choose: Weighting factor $w_{i}>0$ for $i^{\text {th }}$ residual
- Determine: $x_{1}, x_{2}, \ldots, x_{n}$ so that $w_{1} e_{1}^{2}+w_{2} e_{2}^{2}+\cdots+w_{N} e_{N}^{2}$ is a minimum.


## Solution of Least Squares Problem

- Vector of residuals: $\mathbf{e}=\mathbf{M x}-\mathbf{c}$
- Weighting matrix: $\mathbf{W}=\left[\begin{array}{cccc}w_{1} & 0 & \cdots & 0 \\ 0 & w_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_{N}\end{array}\right]=\mathbf{W}^{\mathbf{T}}$
- Weighted squares:
$\mathbf{e}^{\mathrm{T}} \mathbf{W e}=\left(\mathrm{x}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}}-\mathbf{c}^{\mathrm{T}}\right) \mathbf{W}(\mathbf{M x}-\mathbf{c})=\mathrm{x}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}} \mathbf{W M x}-\mathbf{c}^{\mathrm{T}} \mathbf{W M x}-\mathrm{x}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}} \mathbf{W c}+\mathbf{c}^{\mathrm{T}} \mathbf{W c}$
- Least value of the weighted squares:

$$
\begin{gathered}
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{e}^{\mathrm{T}} \mathbf{W e}\right)=2 \mathbf{x}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}} \mathbf{W M}-2 \mathbf{c}^{\mathrm{T}} \mathbf{W M}=\mathbf{0}^{\mathrm{T}} \quad \text { or } \quad \mathbf{M}^{\mathrm{T}} \mathbf{W M} \mathbf{M}=\mathbf{M}^{\mathrm{T}} \mathbf{W} \mathbf{c} \\
\mathbf{x}=\left(\mathbf{M}^{\mathrm{T}} \mathbf{W M}\right)^{-1} \mathbf{M}^{\mathrm{T}} \mathbf{W} \mathbf{c}
\end{gathered}
$$

Note: If $y=\mathbf{x}^{T} \mathbf{B} \mathbf{x}=\left(\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{x}\right)^{\mathrm{T}}=\mathbf{x}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{x}$ then $\frac{\partial y}{\partial \mathbf{x}}=\mathbf{x}^{\mathrm{T}} \mathbf{B I}+\mathbf{x}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{I}$

## Application of Gauss' Method of Least Squares to Space Navigation

$$
\mathbf{x}=\left(\mathbf{M}^{\mathrm{T}} \mathbf{W} \mathbf{M}\right)^{-1} \mathbf{M}^{\mathrm{T}} \mathbf{W} \mathbf{c}
$$

In our notation

$$
\mathbf{x}=\delta \widehat{\mathbf{r}} \quad \mathbf{M}^{\mathbf{T}}=\mathbf{H} \quad \mathbf{W}=\mathbf{A}^{-1} \quad w_{i}=\frac{1}{\sigma_{i}^{2}} \quad \mathbf{c}=\delta \widetilde{\mathbf{q}}
$$

so that

$$
\delta \widehat{\mathbf{r}}=\mathbf{F} \delta \widetilde{\mathbf{q}}
$$

$\mathbf{F}$ is called the Estimator Matrix where

$$
\mathbf{F}=\mathbf{P H A}^{-1} \quad \text { and } \quad \mathbf{P}=\left(\mathbf{H A}^{-1} \mathbf{H}^{\mathbf{T}}\right)^{-1}
$$

The deviation from the reference position is an estimate, denoted by the "hat" over the position vector

$$
\delta \widehat{\mathbf{r}}=\delta \mathbf{r}+\boldsymbol{\epsilon}
$$

and is the sum of the actual deviation and the error in the estimate. Similarly,

$$
\delta \widetilde{\mathbf{q}}=\delta \mathbf{q}+\boldsymbol{\alpha}
$$

where $\boldsymbol{\alpha}$ is the vector error in the determination of the quantities measured. (The vector $\delta \mathbf{q}$ is the actual deviation in those quantities from their reference values.)

The Information Matrix
The matrix $\mathbf{P}^{-1}$ is called the Information Matrix because of the property

$$
\mathbf{H A}^{-1} \mathbf{H}^{\mathbf{T}}=\frac{\mathbf{h}_{1} \mathbf{h}_{1}^{\mathrm{T}}}{\sigma_{1}^{2}}+\frac{\mathbf{h}_{2} \mathbf{h}_{2}^{\mathrm{T}}}{\sigma_{2}^{2}}+\cdots
$$

Each new measurement adds a new term to the series and each term contains all the information about the new measurement.

$$
\mathbf{P}^{-1}=\mathbf{H A}^{-1} \mathbf{H}^{\mathrm{T}}=\sum_{i=1}^{N} \frac{\mathbf{h}_{i} \mathbf{h}_{i}^{\mathrm{T}}}{\sigma_{i}^{2}}
$$

The factor $\sigma_{i}^{2}$ is called the variance. The larger the $i^{\text {th }}$ variance the less weight is given to the $i^{\text {th }}$ measurement.

