MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Terminology

Sphere of Influence Radius r :
Inbound relative velocity vector:
Outbound relative velocity vector:
Turn angle 2ν :
Minimum passing distance:
Circular speed $v_{o m}$ at radius r_{m} : $\quad v_{\circ m}^{2}=\frac{\mu}{r_{m}}$
Point of aim $\quad r_{a}$:

$$
\sin \nu=\frac{1}{1+\frac{v_{\infty}^{2}}{v_{o m}^{2}}}
$$

Close Pass of a Target Planet

The inbound plane of relative motion is the plane containing the orbital velocity vectors of the spacecraft and the planet. The unit normal to that plane is

$$
\mathbf{i}_{n}=\operatorname{Unit}\left(\mathbf{v}_{S C} \times \mathbf{v}_{P}\right)
$$

so that the vector point of aim is

$$
\mathbf{r}_{a}=r_{a} \mathbf{i}_{n} \times \mathbf{i}_{\infty i}
$$

The vector \mathbf{r}_{a} can be rotated about the direction of $\mathbf{i}_{\infty i}$ so that the orientation of the passing plane, relative to the planet, can be controlled at will. The method for this is discussed in the following page.
$\mathbf{v}_{\infty i}$
\mathbf{v}_{∞}

Pages 419-423
$r=$ planet mean distance $\times\left(\frac{\text { planet mass }}{\text { solar mass }}\right)^{\frac{2}{5}}$

$$
v_{\infty i}=v_{\infty o}=\sqrt{\frac{\mu}{-a}}
$$

$\csc \nu=e \quad v_{\infty}^{2} \sin 2 \nu=\left|\mathbf{v}_{\infty o} \times \mathbf{v}_{\infty i}\right|$
$r_{m}=q=a(1-e)=\frac{\mu}{v_{\infty}^{2}}(e-1)=\frac{\mu}{v_{\infty}^{2}}(\csc \nu-1)$
$r_{a}=-a e \cos \nu=-a \cot \nu=r_{m} \sqrt{1+2 \frac{v_{\circ m}^{2}}{v_{\infty}^{2}}}$

$$
\tan \nu=\frac{\mu}{r_{a} v_{\infty}^{2}} \quad r_{a}=r_{m} \sqrt{1+2 \frac{v_{\circ m}^{2}}{v_{\infty}^{2}}}
$$

Fig. 9.1 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

Let O be a fixed point on an axis whose direction is $\mathbf{i}_{\omega}=l \mathbf{i}_{x}+m \mathbf{i}_{y}+n \mathbf{i}_{z}$ and let \mathbf{r} be the vector from O to a point P. When the vector \mathbf{r} rotates about this axis, the point P moves in a circle of radius $r \sin \alpha$ where α is the angle between \mathbf{r} and \mathbf{i}_{ω}.

Figure by MIT OpenCourseWare.
A small rotation through an angle $\delta \psi$ produces a change $\delta \mathbf{r}$ given by

$$
\delta \mathbf{r}=\delta \psi \mathbf{i}_{\omega} \times \mathbf{r}=\delta \psi \mathbf{S r}
$$

where the constant matrix \mathbf{S} is skew-symmetric, i.e., $\mathbf{S}=-\mathbf{S}^{\mathbf{T}}$. Hence

$$
\frac{d \mathbf{r}}{d \psi}=\mathbf{S r}
$$

is a linear vector differential equation for \mathbf{r} with constant coefficients whose solution is

Also, since

$$
\mathbf{r}=e^{\psi \mathbf{S}} \mathbf{r}_{0} \equiv\left(\mathbf{I}+\psi \mathbf{S}+\frac{1}{2!} \psi^{2} \mathbf{S}^{2}+\frac{1}{3!} \psi^{3} \mathbf{S}^{3}+\cdots\right) \mathbf{r}_{0}
$$

$$
\mathbf{S}=\left[\begin{array}{ccc}
0 & -n & m \\
n & 0 & -l \\
-m & l & 0
\end{array}\right] \quad \mathbf{S}^{2}=\left[\begin{array}{ccc}
-m^{2}-n^{2} & l m & l n \\
l m & -l^{2}-n^{2} & m n \\
l n & m n & -l^{2}-m^{2}
\end{array}\right] \quad \mathbf{S}^{3}=\left[\begin{array}{ccc}
0 & n & -m \\
-n & 0 & l \\
m & -l & 0
\end{array}\right]
$$

we conclude that

$$
\mathbf{S}^{3}=-\mathbf{S}
$$

Thus, all powers of the matrix \mathbf{S} are either $\pm \mathbf{S}$ or $\pm \mathbf{S}^{2}$ and we have

$$
\begin{gathered}
\mathbf{R}=\mathbf{I}+\left(\psi-\frac{1}{3!} \psi^{3}+\cdots\right) \mathbf{S}+\left(\frac{1}{2!} \psi^{2}-\frac{1}{4!} \psi^{4}+\cdots\right) \mathbf{S}^{2} \\
\mathbf{R}=\mathbf{I}+\sin \psi \mathbf{S}+(1-\cos \psi) \mathbf{S}^{2}
\end{gathered}
$$

or
Hence $\mathbf{r}=\mathbf{R r}_{0}$ is equivalent to

$$
\begin{gathered}
\mathbf{r}=\mathbf{r}_{0}+\sin \psi\left(\mathbf{i}_{\omega} \times \mathbf{r}_{0}\right)+(1-\cos \psi) \mathbf{i}_{\omega} \times\left(\mathbf{i}_{\omega} \times \mathbf{r}_{0}\right) \\
\text { Try this with } \mathbf{r}_{0}=\mathbf{i}_{x} \text { and } \mathbf{i}_{\omega}=\mathbf{i}_{z}
\end{gathered}
$$

Application to Rotating the Point of Aim vector \mathbf{r}_{a} about the $\mathbf{i}_{\infty i}$ direction

$$
\mathbf{r}_{a}=r_{a} \mathbf{i}_{n} \times \mathbf{i}_{\infty i} \quad \text { or } \quad \mathbf{r}_{a}=\frac{\mu}{2 v_{\infty}^{2} \sin ^{2} \nu} \mathbf{i}_{\infty i} \times\left(\mathbf{i}_{\infty i} \times \mathbf{i}_{\infty o}\right) \quad \text { See Problem 9-4 }
$$

New $\mathbf{r}_{a}=\mathbf{r}_{a}+\sin \psi\left(\mathbf{i}_{\infty i} \times \mathbf{r}_{a}\right)+(1-\cos \psi) \mathbf{i}_{\infty i} \times\left(\mathbf{i}_{\infty i} \times \mathbf{r}_{a}\right)$

Round-Trip Earth to Venus to Earth Published August 1959

Round-Trip Earth to Venus to Mars to Earth Discovered January 1961

Fig. 9.5 (above left); Introduction Fig. 6 (above right); and Fig. 9.6 (below) from $A n$ Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

Planetary FlyBys are definitely three-dimensional
The normal to the plane in which the spacecraft moves in its hyperbolic swingby of the planet is determined by the cross-product of the inbound and outbound relative velocity vectors.

$$
\mathbf{v}_{\infty o} \times \mathbf{v}_{\infty i}
$$

The velocity components, which are part of this data, have never been published before. We give them below in units of feet per second:

Launch date: June 9, 1972
Outbound Earth velocity $\quad\left[\begin{array}{ccc}-6326 & -12628-5051\end{array}\right] \quad$ Magnitude $=15000 \mathrm{Ft} / \mathrm{sec}$
Inbound Venus velocity $\quad\left[\begin{array}{lll}28253 & 2698 & 335\end{array}\right] \quad$ Magnitude $=28384 \mathrm{Ft} / \mathrm{sec}$
Outbound Venus velocity $\quad\left[\begin{array}{lll}23564 & 15771 & -1274\end{array}\right] \quad$ Magnitude $=28383 \mathrm{Ft} / \mathrm{sec}$
Inbound Mars velocity $\quad\left[\begin{array}{lll}19624 & -17633 & -1790\end{array}\right] \quad$ Magnitude $=26443 \mathrm{Ft} / \mathrm{sec}$
Outbound Mars velocity $\quad\left[\begin{array}{lll}-20418 & -16713 & 1736\end{array}\right] \quad$ Magnitude $=26443 \mathrm{Ft} / \mathrm{sec}$
Inbound Earth velocity $\quad\left[\begin{array}{lll}-40370 & -7303 & 1836\end{array}\right] \quad$ Magnitude $=41066 \mathrm{Ft} / \mathrm{sec}$
Return date: September 13, 1973
Launch date: February 6, 1966
Outbound Earth velocity $\quad\left[\begin{array}{lll}-7907 & -13922 & 3985\end{array}\right] \quad$ Magnitude $=16499 \mathrm{Ft} / \mathrm{sec}$
Inbound Venus velocity $\quad\left[\begin{array}{lll}29837 & 1164 & -6313\end{array}\right] \quad$ Magnitude $=30520 \mathrm{Ft} / \mathrm{sec}$
Outbound Venus velocity $\quad\left[\begin{array}{lll}23529 & 18335 & -6453\end{array}\right] \quad$ Magnitude $=30519 \mathrm{Ft} / \mathrm{sec}$
Inbound Mars velocity $\quad\left[\begin{array}{lll}6061 & -14285 & 2957\end{array}\right] \quad$ Magnitude $=15797 \mathrm{Ft} / \mathrm{sec}$
Outbound Mars velocity $\quad\left[\begin{array}{lll}8659 & -13164 & 1115\end{array}\right] \quad$ Magnitude $=15796 \mathrm{Ft} / \mathrm{sec}$
Inbound Earth velocity $\quad\left[\begin{array}{lll}39120 & 512 & 2839\end{array}\right] \quad$ Magnitude $=39226 \mathrm{Ft} / \mathrm{sec}$
Return date: December 17, 1967
Error correction in red was discovered by Steve Block (a student in 16.346) in the fall term of 2003 - over 42 years after the original posting!

The original velocity vector was incorrectly stated as $\left.\begin{array}{lll}16713 & -20418 & 1736\end{array}\right]$.

