MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 23 Estimation of Position and Velacity in Space Navigation

Recall the Definitions

Deviation in quantity measured: δq
Measurement vector: $\quad \mathbf{b}=\left[\begin{array}{l}\mathbf{h} \\ \mathbf{0}\end{array}\right]$
State vector deviation: $\quad \delta \mathbf{x}(t)=\left[\begin{array}{l}\delta \mathbf{r}(t) \\ \delta \mathbf{v}(t)\end{array}\right]$
Fundamental relationship: $\quad \delta q=\mathbf{b}^{\mathbf{T}} \delta \mathbf{x}$
State transition matrix: $\quad \mathbf{\Phi}\left(t_{n}, t_{n-1}\right)=\boldsymbol{\Phi}_{n, n-1}$
State vector deviations at t_{n} and $t_{n-1}: \quad \delta \mathbf{x}_{n}$ and $\delta \mathbf{x}_{n-1}$
Fundamental relationship: $\quad \delta \mathbf{x}_{n}=\boldsymbol{\Phi}_{n, n-1} \delta \mathbf{x}_{n-1}$
Effect at t_{n} of observation made at t_{n-1}

$$
\delta q\left(t_{n-1}\right)=\delta q_{n-1}=\mathbf{b}_{n-1}^{\mathrm{T}} \delta \mathbf{x}_{n-1}=\mathbf{b}_{n-1}^{\mathrm{T}} \boldsymbol{\Phi}_{n, n-1}^{-1} \delta \mathbf{x}_{n}
$$

Recursive Formulation of the Navigation Algorithm

$$
\delta \widehat{\mathbf{x}}_{n}^{*}=\delta \widehat{\mathbf{x}}_{n}+\mathbf{w}(\delta \widetilde{q}-\delta \widehat{q}) \quad \text { where } \quad \delta \widehat{q}=\mathbf{b}^{\mathbf{T}} \delta \widehat{\mathbf{x}}_{n} \quad \text { and } \quad \delta \widehat{\mathbf{x}}_{n}=\mathbf{\Phi}_{n, n-1} \delta \widehat{\mathbf{x}}_{n-1}
$$

Propagating the Covariance Matrix P and the Error Transition Matrix W

- Using the state transition matrix

$$
\begin{aligned}
\delta \widehat{\mathbf{x}}_{n-1} & =\delta \mathbf{x}_{n-1}+\mathbf{e}_{n-1} \\
\delta \widehat{\mathbf{x}}_{n} & =\boldsymbol{\Phi}_{n, n-1} \delta \widehat{\mathbf{x}}_{n-1} \\
\delta \mathbf{x}_{n} & =\boldsymbol{\Phi}_{n, n-1} \delta \mathbf{x}_{n-1}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
\mathbf{e}_{n} & =\boldsymbol{\Phi}_{n, n-1} \mathbf{e}_{n-1} \\
\mathbf{e}_{n}^{\mathrm{T}} & =\mathbf{e}_{n-1}^{\mathrm{T}} \boldsymbol{\Phi}_{n, n-1}^{\mathrm{T}} \\
\mathbf{e}_{n} \mathbf{e}_{n}^{\mathrm{T}} & =\boldsymbol{\Phi}_{n, n-1} \mathbf{e}_{n-1} \mathbf{e}_{n-1}^{\mathrm{T}} \boldsymbol{\Phi}_{n, n-1}^{\mathrm{T}}
\end{aligned}
$$

Hence

$$
\mathbf{P}_{n}=\boldsymbol{\Phi}_{n, n-1} \mathbf{P}_{n-1} \boldsymbol{\Phi}_{n, n-1}^{\mathbf{T}} \quad \text { and } \quad \mathbf{W}_{n}=\boldsymbol{\Phi}_{n, n-1} \mathbf{W}_{n-1}
$$

- Using differential equations

$$
\frac{d \mathbf{x}}{d t}=\mathbf{F} \mathbf{x} \quad \Longrightarrow \quad \frac{d \mathbf{e}}{d t}=\mathbf{F e} \quad \text { and } \quad \frac{d \mathbf{e}^{\mathbf{T}}}{d t}=\mathbf{e}^{\mathrm{T}} \mathbf{F}^{\mathbf{T}}
$$

Hence

$$
\frac{d \mathbf{P}}{d t}=\mathbf{F P}+\mathbf{P F}^{\mathbf{T}} \quad \text { and } \quad \frac{d \mathbf{W}}{d t}=\mathbf{F} \mathbf{W}
$$

Encke's Method of Orbital Integration
Deviations from the Osculating Orbit
Define

$$
\begin{aligned}
\mathbf{r}\left(t_{0}\right) & =\mathbf{r}_{o s c}\left(t_{0}\right) & \mathbf{v}\left(t_{0}\right) & =\mathbf{v}_{o s c}\left(t_{0}\right) \\
\mathbf{r}(t) & =\mathbf{r}_{o s c}(t)+\boldsymbol{\delta}(t) & \mathbf{v}(t) & =\mathbf{v}_{o s c}(t)+\boldsymbol{\nu}(t)
\end{aligned}
$$

Then since

$$
\frac{d^{2} \mathbf{r}}{d t^{2}}+\frac{\mu}{r^{3}} \mathbf{r}=\mathbf{a}_{d} \quad \frac{d^{2} \mathbf{r}_{o s c}}{d t^{2}}+\frac{\mu}{r_{o s c}^{3}} \mathbf{r}_{o s c}=\mathbf{0}
$$

we can write

$$
\frac{d^{2} \boldsymbol{\delta}}{d t^{2}}+\frac{\mu}{r_{o s c}^{3}} \boldsymbol{\delta}=\frac{\mu}{r_{o s c}^{3}}\left(1-\frac{r_{o s c}^{3}}{r^{3}}\right) \mathbf{r}+\mathbf{a}_{d}
$$

with the initial conditions

$$
\boldsymbol{\delta}\left(t_{0}\right)=\mathbf{0} \quad \text { and }\left.\quad \frac{d \boldsymbol{\delta}}{d t}\right|_{t=t_{0}}=\boldsymbol{\nu}\left(t_{0}\right)=\mathbf{0}
$$

Coping with Numerical Accuracy for Small Deviations

When $r \approx r_{o s c}$, we can define
and then write

$$
q=\frac{\left(\boldsymbol{\delta}+2 \mathbf{r}_{o s c}\right) \cdot \boldsymbol{\delta}}{r_{o s c}^{2}}
$$

$$
\begin{aligned}
f(q) \stackrel{\text { def }}{=} 1-\frac{r_{o s c}^{3}}{r^{3}} & =1-(1+q)^{-\frac{3}{2}} \\
& =3 \cdot \frac{q}{2}\left[1-\frac{5}{2}\left(\frac{q}{2}\right)+\frac{5 \cdot 7}{2 \cdot 3}\left(\frac{q}{2}\right)^{2}-\frac{5 \cdot 7 \cdot 9}{2 \cdot 3 \cdot 4}\left(\frac{q}{2}\right)^{3}+\cdots\right]
\end{aligned}
$$

which is used in the classical method, or,

$$
f(q)=q \frac{3+3 q+q^{2}}{(1+q)^{\frac{3}{2}}+(1+q)^{3}}
$$

as discovered by James E. Potter.
Encke's Method
Johann Franz Encke (1791-1865)

1. Use the Lagrangian coefficients to extrapolate along the osculating orbit:

$$
\begin{aligned}
\mathbf{r}_{o s c}(t) & =F \mathbf{r}\left(t_{0}\right)+G \mathbf{v}\left(t_{0}\right) \\
\mathbf{v}_{o s c}(t) & =F_{t} \mathbf{r}\left(t_{0}\right)+G_{t} \mathbf{v}\left(t_{0}\right)
\end{aligned}
$$

Note: Solving Kepler's equation is necessary to determine the coefficients.
2. Use numerical integration to propagate the deviation vector $\boldsymbol{\delta}$:

$$
\frac{d^{2} \delta}{d t^{2}}+\frac{\mu}{r_{o s c}^{3}} \delta=\frac{\mu}{r_{o s c}^{3}} f(q) \mathbf{r}(t)+\mathbf{a}_{d} \quad \text { where } \quad \mathbf{r}=\mathbf{r}_{o s c}+\delta
$$

3. Use periodic rectification to maintain the efficiency of the algorithm.

Aug. 1959 \qquad M.I.T. INSTRUMENTATION LABORATORY

Introduction Figure 7 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with
Navigating to the Moon

M.I.T. INSTRUMENTATION LABORATORY—_me nses-s_ $8 / 64$

Introduction Figure 8 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

