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Lecture 23 Estimation of Position and Velocity in Space Navigation

Recall the Definitions 

Deviation in quantity measured: δq 

hMeasurement vector: b = 
0 

δr(t)State vector deviation: δx(t) =  
δv(t) 

Fundamental relationship: δq = bT δx 

State transition matrix: Φ(t n, t ) =  Φ n,n−1n−1

State vector deviations at t and t : δx and δx n n−1 n n−1 

Fundamental relationship: δx n = Φ n,n−1 δx n−1 

Effect at t of observation made at tn n−1 

δq(t ) =  δq δx Φ−1 δx n−1 n−1 = bn
T 

−1 n−1 = bn
T 

−1 n,n−1 n 

Recursive Formulation of the Navigation Algorithm 

δx̂n 
∗ = δx̂n + w(δq̃ − δq̂ ) where δq̂ = bT δx̂n and δx̂n = Φ n,n−1 δx̂n−1 

Propagating the Covariance Matrix P and the Error Transition Matrix W 

Using the state transition matrix • 

δx̂n−1 = δxn−1 + e e n = Φ n,n−1e n−1n−1 

δx̂ = Φ δx̂ = eT = eT ΦT 

n n,n−1 n−1 ⇒ n n−1 n,n−1 

δx = Φ δx e eT = Φ ΦT 

n n,n−1 n n,n−1e n−1 n,n−1n−1 n n−1e
T 

Hence 
P = Φ P ΦT and W = Φ W n n,n−1 n−1 n,n−1 n n,n−1 n−1 

Using differential equations • 

dx de deT 

= Fx = = Fe and = eT FT 

dt 
⇒ 

dt dt 

Hence 
dP dW = FP + PFT and = FW 
dt dt 
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δ t0 ν t
dt ∣ 0

t=t0 

Coping with Numerical Accuracy for Small Deviations 
When r ≈ r osc , we can define 

(δ + 2r osc) δ
q = 

and then write r2 

·  

osc 

r3 

(q) def
f = 1  − osc = 1  − (1 + q)− 3 2 

r3 

q 2 

= 3  · 
[ 5 
1 − 

( q ) 5 q 3 

+ 
· 7 ( q ) 5 7 9 − 

· ·
2 2 2 3 2 2 3 

)
+ 

2 4 

( 
2 

· · ·

whic

] 
 · · ·

h is used in the classical method, or, 

3 + 3q + q2 

∣ 

Encke’s Method of Orbital Integration	 #9.4 

Deviations from the Osculating Orbit 

Define 
r(t0) =  r osc(t0) v(t0) =  v osc(t0) 
r(t) =  r osc(t) +  δ(t) v(t) =  v osc(t) +  ν(t) 

Then since 
d2r	 d2r 

+ 
µ 

r = ad 
osc + 

µ 
r osc = 0 

dt2 r3 dt2 r3 
osc 

we can write 
d2 δ µ µ ( r3 ) 

+ δ = osc r + addt2 r3 r3 
1 − 

r3 
osc osc 

with the initial conditions 
dδ ∣

 ( ) =  0 and ∣ =  ( ) =  0 

f(q) =  q 
(1 + q)

3
2 + (1 +  q)3 

as discovered by James E. Potter. 

Encke’s Method	 Johann Franz Encke (1791–1865) 

1. Use the Lagrangian coefficients to extrapolate along the osculating orbit: 

rosc(t) =  Fr(t0) +  Gv(t0) 
v osc(t) =  Ftr(t0) +  Gtv(t0) 

Note: Solving Kepler’s equation is necessary to determine the coefficients. 
2.	 Use numerical integration to propagate the deviation vector δ :


d2 δ µ µ

r = r + δwhere+ δ = f(q)r(t) +  ad oscdt2 r3 r3 

osc osc 

3. Use periodic rectification to maintain the efficiency of the algorithm. 
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Navigating To Mars


Navigating to the Moon 
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Introduction Figure 7 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.

elc
Text Box
Introduction Figure 8 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.




