MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exercises 14

1. In Lecture 13, Page 3 calculate the second derivative of $Q(x)$ and show that Q is a solution of Gauss' Differential Equation. Also, determine the numerical values for α, β and γ.
2. Carefully, follow the proof on Pages 62-63 that the continued fraction for $Q(x)$ converges for $-\infty<x<1$.
3. Do Problem 1-6 in the textbook.
4. Use the Top-Down Method to find values for $\tan x$.
5. Evaluate the Golden Section $\frac{1}{2}(1+\sqrt{5})$ using the Top-Down Method. [See Equation (1.26) in the textbook.]
6. Show that

$$
\frac{\log (1+x)}{x}
$$

is a hypergeometric function by showing that it is a solution of Gauss' Differential Equation.

