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Lecture 18 Preliminary Orbit Determination Using Taylor Series #3.7

Taylor’s Series (1712)	 Brook Taylor (1685–1731) 

The vector r can be expressed as a Taylor series about r1 with time interval τ = t2 − t1 : 

τ2 τ3 

r2 = r1 + τv1 + 
2! 

r��1 + 
3! 

r���1 + O(τ4) 

Approximate Solution of the BVP using Taylor’s Series 

Differentiate the series twice and use the equation of motion 
µ

r��2 + �2r2 = 0 where �2 = 3r2 

Then 
r��2 = r��1 + τr���1 

+ τr���−�2r2 = −�1r1 1 

Hence 
τ2 τ2 

r2 = r1 + τv1 − 
2! 

�1r1 + 
3!

(�1r1 − �2r2) 

Solve for τv1 to obtain � 1 �1 
� � 1 �2 

� 
v1 = − τ r1 + + τ r2 Problem 3–31 

τ	
− 

3 τ 6 

valid to third order in the time interval τ = t2 − t1 . 

Another Method of Gibbs using Taylor Series Pages 136–137 

r(t) =  a0 + a1(t − τ) +  a2(t − τ)2 + a3(t − τ)3 + a4(t − τ)4 + O[(t − τ)5] 

where a0 , a1 , a2 ,. . . are the function and its derivatives evaluated at time t = τ . 

•	 Given r1 = r(t1), r2 = r(t2), r3 = r(t3) 
To determine p we have six equations in the six unknowns a0 , a1 , a2 , a3 , a4 , p :• 

r1 = a0 − a1τ3 + a2τ3
2 − a3τ3

3 + a4τ3
4 τ1 = t3 − t2 

r2 = a0 where τ2 = t3 − t1 = τ1 + τ3 

Also 
r3 = a0 + a1τ1 + a2τ1

2 + a3τ1
3 + a4τ1

4	 τ3 = t2 − t1 

�1(p − r1) = 2a2 − 6a3τ3 + 12a4τ3
2 

µd2r�2(p − r2) = 2a2	 since where � == �(p − r) 
rdt2 

�3(p − r3) = 2a2 + 6a3τ1 + 12a4τ1
2 
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´ Etienne Bezout’s Theorem	 Appendix D 

Consider the system of linear algebraic system 

a1x + a2y + q1 = 0  
b1x + b2y + q2 = 0  

of two equations in two unknowns x and y . If a third equation is included, 

a1x + a2y + q1 = 0  
b1x + b2y + q2 = 0  
c1x + c2y + q3 = 0  

the system is now over-determined. 
A necessary and sufficient condition for the system to be consistent is that 

a1 a2 q1 

b1 b2 q2 

c1 c2 q3 

= 0 


Since we require only the parameter p , we can choose p to make the system consistent


1 −τ3 τ3
2 −τ3

3 τ3
4 r1 

1 0 0 0 0 r2 

1 τ1 τ1
2 τ1

3 τ1
4 r3 

0 0 2 −6τ3 12τ3
2 �1(p − r1) 

0 0 2 0 0 �2(p − r2) 
0 0 2 6τ1 12τ2 �3(p − r3)1 

= 0 


Thus

r1τ1(1 + �1A1) − r2τ2(1 − �2A2) +  r3τ3(1 + �3A3) p = 

τ1�1A1 + τ2�2A2 + τ3�3A3 

where 12A1 = τ2τ3 − τ2 12A2 = τ1τ3 + τ2 12A3 = τ1τ2 − τ2 
1	 2 3 

•	 To determine a we again have six equations in six unknowns with the last three 
equations created from the relation: 

d2 �1 1 
dt2 

(r 2) = 2µ
r 
− 

a 
Problem 3–7


Then, in the same manner as before, we find


2	 2 2µ r1	 r2 r3 

a	
= − 

τ2τ3 

(1 − 2�1A1) +  
τ1τ3 

(1 + 2�2A2) − 
τ1τ2 

(1 − 2�3A3) 
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Laplace’s Method (1780) 

• Given the unit vectors iρ1
(t1), iρ2

(t2), iρ3
(t3) where r = ρ + d and ρ = ρ iρ 

• Determine ρ2 , dρ2/dt , d iρ2
/dt from which we obtain 

r2 = ρ2 iρ2 
+ d2 

dρ d i
2 ρ2 dd

v2 = iρ2 
+ ρ2 + 2 

dt dt dt 

From the second derivative of the vector ρ = ρ iρ 

d2 ρ d2iρ dρ di d2ρ 
= ρ + 2 ρ + i

dt2 dt2 dt dt dt2 ρ

and the equations of motion 

d2 ρ d2r d2d µ µ µ µ 
=  = d  r = d  (ρ + d) 

2 2 2 3 3 3 3 

ρD1 = µ

dρ 
2 D = µ

� 1 1 
d3 

− 
r

� 
D2 (I)

3 

1 1 
dt 1 

r 

� 
r3 

− D
d3 3 (II) 

2 = ρ2 + d2 + 2

� 
ρ(iρ · d) (III) 

1. Solve (I) and (III) for r2 and ρ2 . 
dρ

2. Use (II) to determine at time t2 . dt 
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dt dt
−

dt d
−

r d
−

r

we have �d2ρ µ � dρ diρ d2iρ 
� 1 1 � 

dt2 
+ 

r3 
ρ iρ + 2

dt dt 
+ ρ 

dt2 
+ µ

r3 
− 

d3 
d = 0 

Next, take the scalar product of this vector equation with the vector cross-product 

diρiρ × 
dt � d iρ d2iρ 

� � 1 1 � �  d iρ 
� 

to obtain ρ iρ × 
dt 

· 
dt2 

+µ
r3 

− 
d3 

iρ × 
dt 

· d = 0  � �� � � �� � 
= D1 = D2 

d2iρSimilarly, using iρ × 
dt2 

dρ � d2iρ diρ 
� � 1 1 � �  d2iρ 

� 
gives 2

dt 
iρ × 

dt2 
· 

dt 
+µ

r3 
− 

d3 
iρ × 

dt2 
· d = 0  � �� � � �� � 

= −D1 = D3 

As a result, we have Laplace’s equations 



���
 ���
 ���


Lagrange’s Interpolation Formulas (1778) 

The vector iρ(t)can be expressed as a Taylor series 

iρ(t) =  a0 + (t − t0)a1 + 1 (t − t0)
2a2 + O(t − t0)

3 
2 

Expanding about the time t2 gives 

iρ3 
= a0 + τ1a1 + 12τ1

2a2 

iρ2 
= a0 

iρ1 
= a0 − τ3a1 + 2

1τ3
2a2 

a0 = iρ a1 = 
diρ d2iρ a2 = 

dt2dt
t=t0 t=t0 t=t0 

Hence, we have 
τ1a1 + 1τ1

2a2 = iρ3 
− iρ22

τ3a1 − 2
1τ3

2a2 = iρ2 
− iρ1 

to be solved for a1 and a2 . 
The result is 

diρ 

dt


d2iρ 

dt2 

���� 
t2����� 
t2 

= − 
τ1 iρ1 

+ 
τ1 − τ3 iρ2 

+ 
τ3 iρ3τ2τ3 τ1τ3 τ1τ2 

2 2 2 
= iρ1 

− iρ2 
+ iρ3τ2τ3 τ1τ3 τ1τ2 

which are valid to second order in the time intervals where 

τ1 = t3 − t2 τ2 = t3 − t1 = τ1 + τ3 τ3 = t2 − t1 

More accurate values for these derivatives can be obtained if more than three sets of 
observational data are available. 

The determination of the derivatives of the observational data is the greatest weakness 
in Laplace’s method of orbit determination. In fact, it is necessary to use additional 
observations to obtain any reasonable accuracy. 
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