MIT OpenCourseWare
http://ocw.mit.edu

### 16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Secture 22 The Couariance, Information \& Estimator Matrices

The Covariance Matrix
\#13.6

- Random Vector of Measurement Errors: $\boldsymbol{\alpha}$ where $\quad \boldsymbol{\alpha}^{\mathrm{T}}=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n}\end{array}\right]$

Assume measurement errors independent.

- First and Second Moments: $E(\boldsymbol{\alpha})=\overline{\boldsymbol{\alpha}}=\mathbf{0}$ and $E\left(\alpha_{i} \alpha_{j}\right)=\overline{\alpha_{i} \alpha_{j}}=0 \quad(i \neq j)$
- Variances: $E\left(\alpha_{i}^{2}\right)=\overline{\alpha_{i}^{2}}=\sigma_{i}^{2}$
- Variance Matrix: $E\left(\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathbf{T}}\right)=\overline{\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathbf{T}}}=\mathbf{A}=\left[\begin{array}{cccc}\sigma_{1}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{n}^{2}\end{array}\right]$
- Estimation Error Vector: $\boldsymbol{\epsilon}=\mathbf{P H A}^{-1} \boldsymbol{\alpha}$
- Covariance Matrix of Estimation Errors: $E\left(\boldsymbol{\epsilon} \epsilon^{\mathrm{T}}\right)=\overline{\boldsymbol{\epsilon} \epsilon^{\mathrm{T}}}$

$$
\begin{aligned}
\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\mathrm{T}} & =\mathbf{P H A}^{-1} \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{P} \\
\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\mathrm{T}} & =\mathbf{P H A}^{-1} \overline{\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}}} \mathbf{A}^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{P}=\mathbf{P H A}^{-1} \mathbf{A} \mathbf{A}^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{P} \\
& =\mathbf{P H A}^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{P}=\mathbf{P P}^{-1} \mathbf{P}=\mathbf{P}=\left(\mathbf{P}^{-1}\right)^{-1}
\end{aligned}
$$

Covariance Matrix $=(\text { Information Matrix })^{-1}$

## A Matrix Identity (The Magic Lemma)

Let $\mathbf{X}_{m n}$ and $\mathbf{Y}_{n m}$ be rectangular compatible matrices such that $\mathbf{X}_{m n} \mathbf{Y}_{n m}$ and $\mathbf{Y}_{n m} \mathbf{X}_{m n}$ are both meaningful.

However, $\mathbf{R}_{m m}=\mathbf{X}_{m n} \mathbf{Y}_{n m}$ is an $m \times m$ matrix while $\mathbf{S}_{n n}=\mathbf{Y}_{n m} \mathbf{X}_{m n}$ is an $n \times n$ matrix. With this understanding, the following sequence of matrix operations leads to a remarkable and very useful identity:

$$
\begin{aligned}
\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)^{-1} & =\mathbf{I}_{m m} \\
\mathbf{Y}_{n m}\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)^{-1} & =\mathbf{Y}_{n m} \\
\left(\mathbf{I}_{n n}+\mathbf{Y}_{n m} \mathbf{X}_{m n}\right) \mathbf{Y}_{n m}\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)^{-1} & =\mathbf{Y}_{n m} \\
\left(\mathbf{I}_{n n}+\mathbf{Y}_{n m} \mathbf{X}_{m n}\right) \mathbf{Y}_{n m}\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)^{-1} \mathbf{X}_{m n} & =\mathbf{Y}_{n m} \mathbf{X}_{m n} \\
\mathbf{I}_{n n}+\left(\mathbf{I}_{n n}+\mathbf{Y}_{n m} \mathbf{X}_{m n}\right) \mathbf{Y}_{n m}\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)^{-1} \mathbf{X}_{m n} & =\mathbf{I}_{n n}+\mathbf{Y}_{n m} \mathbf{X}_{m n} \\
(\mathbf{I}+\mathbf{Y X})^{-1}\left[\mathbf{I}+(\mathbf{I}+\mathbf{Y X}) \mathbf{Y}(\mathbf{I}+\mathbf{X Y})^{-1} \mathbf{X}\right] & =(\mathbf{I}+\mathbf{Y X})^{-1}(\mathbf{I}+\mathbf{Y X}) \\
(\mathbf{I}+\mathbf{Y X})^{-1}+\mathbf{Y}(\mathbf{I}+\mathbf{X Y})^{-1} \mathbf{X} & =\mathbf{I}
\end{aligned}
$$

Hence:

$$
\left(\mathbf{I}_{n n}+\mathbf{Y}_{n m} \mathbf{X}_{m n}\right)^{-1}=\mathbf{I}_{n n}-\mathbf{Y}_{n m}\left(\mathbf{I}_{m m}+\mathbf{X}_{m n} \mathbf{Y}_{n m}\right)^{-1} \mathbf{X}_{m n}
$$

To generalize: Let $\mathbf{Y}_{n m}=\mathbf{A}_{n n} \mathbf{B}_{n m}$ and $\mathbf{X}_{m n}=\mathbf{C}_{m m}^{-1} \mathbf{B}_{m n}^{\mathrm{T}}$. Then

$$
\left(\mathbf{A}^{-1}+\mathbf{B C}^{-1} \mathbf{B}^{\mathrm{T}}\right)^{-1}=\mathbf{A}-\mathbf{A B}\left(\mathbf{C}+\mathbf{B}^{\mathrm{T}} \mathbf{A B}\right)^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{A}
$$

Inverting the Information Matrix Using the Magic Lemma

- Recursive formulation: $\mathbf{P}^{\star-1}=\mathbf{P}^{-1}+\mathbf{h}\left(\sigma^{2}\right)^{-1} \mathbf{h}^{\mathbf{T}} \quad\left[=\mathbf{A}^{-1}+\mathbf{B C} \mathbf{C}^{-1} \mathbf{B}^{\mathbf{T}}\right]$

$$
\left(\mathbf{A}^{-1}+\mathbf{B C}^{-1} \mathbf{B}^{\mathrm{T}}\right)^{-1}=\mathbf{A}-\mathbf{A B}\left(\mathbf{C}+\mathbf{B}^{\mathrm{T}} \mathbf{A B}\right)^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{A}
$$

- Using the magic lemma: $\mathbf{P}^{\star}=\mathbf{P}-\mathbf{P h}\left(\sigma^{2}+\mathbf{h}^{\mathbf{T}} \mathbf{P h}\right)^{-1} \mathbf{h}^{\mathbf{T}} \mathbf{P}$
- Define: $a=\sigma^{2}+\mathbf{h}^{\mathbf{T}} \mathbf{P h}$ and $\mathbf{w}=\frac{1}{a} \mathbf{P h}$ so that

$$
\mathbf{P}^{\star}=\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{P}
$$

The Square Root of the P Matrix
The matrix $\mathbf{W}$ is the Square Root of a Positive Definite Matrix $\mathbf{P}$ if $\mathbf{P}=\mathbf{W W}^{\mathbf{T}}$

$$
\begin{aligned}
& \mathbf{P}^{\star}=\mathbf{P}-\frac{1}{a} \mathbf{P} \mathbf{h h}^{\mathbf{T}} \mathbf{P} \\
& \mathbf{W}^{\star} \mathbf{W}^{\star \mathbf{T}}=\mathbf{W}\left(\mathbf{I}-\frac{1}{a} \mathbf{W}^{\mathrm{T}} \mathbf{h} \mathbf{h}^{\mathrm{T}} \mathbf{W}\right) \mathbf{W}^{\mathbf{T}} \\
&=\mathbf{W}\left(\mathbf{I}-\frac{1}{a} \mathbf{z z}^{\mathrm{T}}\right) \mathbf{W}^{\mathbf{T}} \\
&=\mathbf{W}\left(\mathbf{I}-\beta \mathbf{z z}^{\mathrm{T}}\right)\left(\mathbf{I}-\beta \mathbf{\mathbf { z Z } ^ { \mathrm { T } }}\right) \mathbf{W}^{\mathrm{T}} \\
&=\mathbf{W}\left(\mathbf{I}-2 \beta \mathbf{z z}^{\mathrm{T}}+\beta^{2} \mathbf{z Z}^{\mathrm{T}} \mathbf{z Z}^{\mathrm{T}}\right) \mathbf{W}^{\mathbf{T}} \\
&=\mathbf{W}\left[\mathbf{I}-\left(2 \beta-\beta^{2} z^{2}\right) \mathbf{z z}^{\mathrm{T}}\right] \mathbf{W}^{\mathbf{T}} \\
& z^{2}=\mathbf{h}^{\mathrm{T}} \mathbf{W} \mathbf{W}^{\mathrm{T}} \mathbf{h}=\mathbf{h}^{\mathrm{T}} \mathbf{P h}=a-\sigma^{2}
\end{aligned}
$$

But

Hence:

$$
2 \beta-\beta^{2} z^{2}=\frac{1}{a} \quad \Longrightarrow \quad \beta=\frac{1}{a+\sqrt{a \sigma^{2}}}
$$

$$
\mathbf{W}^{\star}=\mathbf{W}\left(\mathbf{I}-\frac{\mathbf{z z}^{\mathrm{T}}}{a+\sqrt{a \sigma^{2}}}\right) \quad \mathbf{z}=\mathbf{W}^{\mathrm{T}} \mathbf{h}
$$

## Properties of the Estimator

- Linear
- Unbiased: If measurements are exact $(\boldsymbol{\alpha}=\mathbf{0})$ then $\delta \widetilde{\mathbf{q}}=\delta \mathbf{q}=\mathbf{H}^{\mathbf{T}} \delta \mathbf{r}$ so that

$$
\delta \widehat{\mathbf{r}}=\mathbf{P P}^{-1} \delta \mathbf{r}=\delta \mathbf{r}
$$

- Reduces to deterministic case ( $\delta \widehat{\mathbf{r}}=\mathbf{H}^{-\mathbf{T}} \delta \widetilde{\mathbf{q}}$ ) if no redundant measurements.

If $\mathbf{H}$ is square \& non-singular, then $\mathbf{P}=\mathbf{H}^{-\mathbf{T}} \mathbf{A} \mathbf{H}^{-1}$ and

$$
\delta \widehat{\mathbf{r}}=\mathbf{H}^{-\mathbf{T}} \mathbf{A} \mathbf{H}^{-1} \mathbf{H} \mathbf{A}^{-1} \delta \widetilde{\mathbf{q}}=\mathbf{H}^{-\mathbf{T}} \delta \widetilde{\mathbf{q}}
$$

Define $\widetilde{q}$

$$
\begin{array}{lll}
\delta \widetilde{\mathbf{r}}^{\star}=\mathbf{F}^{\star} \delta \widetilde{\mathbf{q}}^{\star} & \mathbf{F}^{\star}=\mathbf{P}^{\star} \mathbf{H}^{\star} \mathbf{A}^{\star-1} & \delta \widetilde{\mathbf{q}}^{\star}=\left[\begin{array}{c}
\delta \widetilde{\mathbf{q}} \\
\delta \widetilde{q}
\end{array}\right] \\
\mathbf{P}^{\star}=\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{P} & \mathbf{H}^{\star}=\left[\begin{array}{ll}
\mathbf{H} & \mathbf{h}
\end{array}\right] & \mathbf{A}^{\star}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0}^{\mathbf{T}} & \sigma^{2}
\end{array}\right]
\end{array}
$$

Then

$$
\left.\left.\begin{array}{rl}
\mathbf{F}^{\star} & =\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{P}\left[\begin{array}{ll}
\mathbf{H} & \mathbf{h}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
\mathbf{0}^{\mathbf{T}} & \sigma^{-2}
\end{array}\right]=\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{P}\left[\begin{array}{ll}
\mathbf{H} \mathbf{A}^{-1} & \frac{\mathbf{h}}{\sigma^{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{F} & \frac{a \mathbf{w}}{\sigma^{2}}-\frac{\mathbf{w}\left(a-\sigma^{2}\right)}{\sigma^{2}}
\end{array}\right]=\left[\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{F} \quad \mathbf{w}\right.
\end{array}\right]\right) \text { ( } \begin{array}{ll}
\delta \widehat{\mathbf{r}}^{\star}=\mathbf{F}^{\star} \delta \widetilde{\mathbf{q}}^{\star} & =\left[\begin{array}{ll}
\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{F} & \mathbf{w}
\end{array}\right]\left[\begin{array}{c}
\delta \widetilde{\mathbf{q}} \\
\delta \widetilde{q}
\end{array}\right]=\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \delta \widehat{\mathbf{r}}+\mathbf{w} \delta \widetilde{q} \\
& =\delta \widehat{\mathbf{r}}+\mathbf{w}\left(\delta \widetilde{q}-\mathbf{h}^{\mathbf{T}} \delta \widehat{\mathbf{r}}\right)=\delta \widehat{\mathbf{r}}+\mathbf{w}(\delta \widetilde{q}-\delta \widehat{q})
\end{array}
$$

Since $\delta q=\mathbf{h}^{\mathbf{T}} \delta \mathbf{r}$, then $\delta \widehat{q}=\mathbf{h}^{\mathbf{T}} \delta \widehat{\mathbf{r}}$ is the best estimate of the new measurement.

$$
\begin{aligned}
\delta \widehat{\mathbf{r}}^{\star} & =\delta \widehat{\mathbf{r}}+\mathbf{w}(\delta \widetilde{q}-\delta \widehat{q}) \\
\mathbf{w} & =\frac{1}{\sigma^{2}+\mathbf{h}^{\mathrm{T}} \mathbf{P h}} \mathbf{P h} \\
\mathbf{P}^{\star} & =\left(\mathbf{I}-\mathbf{w h}^{\mathbf{T}}\right) \mathbf{P}
\end{aligned}
$$

$$
\begin{aligned}
\delta \widehat{\mathbf{r}}^{\star} & =\delta \widehat{\mathbf{r}}+\mathbf{w}(\delta \widetilde{q}-\delta \widehat{q}) \\
\mathbf{z} & =\mathbf{W}^{\mathbf{T}} \mathbf{h} \\
\mathbf{w} & =\frac{1}{\sigma^{2}+z^{2}} \mathbf{W} \mathbf{z} \\
\mathbf{W}^{\star} & =\mathbf{W}\left(\mathbf{I}-\frac{\mathbf{z z}^{\mathrm{T}}}{a+\sqrt{a \sigma^{2}}}\right)
\end{aligned}
$$

Triangular Square Root

$$
\mathbf{W} \mathbf{W}^{\mathbf{T}}=\left[\begin{array}{ccc}
0 & 0 & w_{1} \\
0 & w_{2} & w_{3} \\
w_{4} & w_{5} & w_{6}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & w_{4} \\
0 & w_{2} & w_{5} \\
w_{1} & w_{3} & w_{6}
\end{array}\right]=\left[\begin{array}{lll}
m_{1} & m_{2} & m_{3} \\
m_{2} & m_{4} & m_{5} \\
m_{3} & m_{5} & m_{6}
\end{array}\right]
$$

where

$$
\begin{array}{lll}
w_{1}^{2}=m_{1} & w_{3}=\frac{m_{2}}{w_{1}} & w_{6}=\frac{m_{3}}{w_{1}} \\
w_{2}^{2}=\frac{m_{1} m_{4}-m_{2}^{2}}{m_{1}} & w_{4}^{2}=\frac{\operatorname{det} \mathbf{M}}{m_{1} w_{2}^{2}} & w_{5}=\frac{m_{5}-w_{3} w_{6}}{w_{2}}
\end{array}
$$

