MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exercises 01

1. Given

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{i}_{x}-\mathbf{i}_{y}+\mathbf{i}_{z} \\
& \mathbf{b}=\mathbf{i}_{x}+2 \mathbf{i}_{y}-\mathbf{i}_{z} \\
& \mathbf{c}=\mathbf{i}_{x}+\mathbf{i}_{y}-2 \mathbf{i}_{z}
\end{aligned}
$$

find a vector parallel to the plane of \mathbf{b} and \mathbf{c} and perpendicular to \mathbf{a}.
2. Find the angle between the vectors

$$
\begin{aligned}
& \mathbf{a}=\mathbf{i}_{x}+\mathbf{i}_{y}+2 \mathbf{i}_{z} \\
& \mathbf{b}=2 \mathbf{i}_{x}-\mathbf{i}_{y}+\mathbf{i}_{z}
\end{aligned}
$$

3. The vectors from the origin to the points A, B, C are

$$
\begin{aligned}
& \mathbf{a}=\mathbf{i}_{x}+\mathbf{i}_{y}-\mathbf{i}_{z} \\
& \mathbf{b}=3 \mathbf{i}_{x}+3 \mathbf{i}_{y}+2 \mathbf{i}_{z} \\
& \mathbf{c}=3 \mathbf{i}_{x}-\mathbf{i}_{y}-2 \mathbf{i}_{z}
\end{aligned}
$$

Find the distance from the origin to the plane $A B C$.
4. By means of products express the condition that three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be parallel to a plane.
5. Prob G-4 Consider a triangle with sides a, b and c. If \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors representing the sides of the triangle, use Vector Algebra to derive the Law of Cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

6. Prob 3-13 From the pericenter and apocenter radii r_{p} and r_{a}, the semimajor and semiminor axes and the parameter of an orbit can be conveniently obtained. Show that

$$
a=\frac{1}{2}\left(r_{p}+r_{a}\right) \quad b=\sqrt{r_{p} r_{a}} \quad \frac{1}{p}=\frac{1}{2}\left(\frac{1}{r_{p}}+\frac{1}{r_{a}}\right) \quad \text { or } \quad p=\frac{2 r_{p} r_{a}}{r_{p}+r_{a}}
$$

7. Prob 3-1 To derive the equations of motion in polar coordinates we differentiate the vector representing the velocity in polar coordinates. We have

$$
\mathbf{a}=\frac{d \mathbf{v}}{d t}=\left[\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right] \mathbf{i}_{r}+\left[2 \frac{d r}{d t} \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}}\right] \mathbf{i}_{\theta}=-\frac{\mu}{r^{2}} \mathbf{i}_{r}
$$

so that

$$
\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}+\frac{\mu}{r^{2}}=0 \quad \text { and } \quad 2 \frac{d r}{d t} \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}}=0
$$

8. Prob. 3-6 The second of these equations of motion can be integrated to produce Kepler's second law

$$
r^{2} \frac{d \theta}{d t}=h
$$

which, in this form, also provides a transformation of independent variable from t to θ as given by

$$
\frac{d r}{d t}=\frac{d r}{d \theta} \frac{d \theta}{d t}=\frac{h}{r^{2}} \frac{d r}{d \theta}
$$

Similarly,

$$
\frac{d^{2} r}{d t^{2}}=\frac{h}{r^{2}} \frac{d}{d \theta}\left(\frac{h}{r^{2}} \frac{d r}{d \theta}\right)=\frac{h^{2}}{r^{4}} \frac{d^{2} r}{d \theta^{2}}-2 \frac{h^{2}}{r^{5}}\left(\frac{d r}{d \theta}\right)^{2}
$$

Substituting in the first of the equations of motion gives

$$
\frac{1}{r^{2}} \frac{d^{2} r}{d \theta^{2}}-\frac{2}{r^{3}}\left(\frac{d r}{d \theta}\right)^{2}-\frac{1}{r}=-\frac{\mu}{h^{2}}=-\frac{1}{p}
$$

Next, we replace the dependent variable r by its reciprocal $1 / r$ to obtain

$$
\begin{aligned}
\frac{d}{d \theta}\left(\frac{1}{r}\right) & =-\frac{1}{r^{2}} \frac{d r}{d \theta} \\
\frac{d^{2}}{d \theta^{2}}\left(\frac{1}{r}\right) & =-\frac{1}{r^{2}} \frac{d^{2} r}{d \theta^{2}}+\frac{2}{r^{3}}\left(\frac{d r}{d \theta}\right)^{2}=\frac{1}{p}-\frac{1}{r}
\end{aligned}
$$

so that

$$
\frac{d^{2}}{d \theta^{2}}\left(\frac{1}{r}\right)+\frac{1}{r}=\frac{1}{p}
$$

is obtained as a linear, constant-coefficient, second-order differential equation for $1 / r$.
The solution provides an independent derivation of the equation of orbit and is readily obtained as

$$
\frac{1}{r}=\frac{1}{p}+c_{1} \cos \theta+c_{2} \sin \theta
$$

First $\theta=\frac{1}{2} \pi \Longrightarrow c_{2}=0 \quad$ Then $\theta=0 \Longrightarrow c_{1} p=e \quad$ Hence

$$
\frac{1}{r}=\frac{1}{p}+\frac{e}{p} \cos \theta \quad \text { or } \quad r=\frac{p}{1+e \cos \theta}
$$

9. Prob. 3-14 Suppose the force of attraction is proportional to the distance separating m_{1} and m_{2} rather than inversely proportional to the square of the distance. The equations of motion would be

$$
\begin{aligned}
& m_{1} \frac{d^{2} \mathbf{r}_{1}}{d t^{2}}=G m_{1} m_{2}\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \\
& m_{2} \frac{d^{2} \mathbf{r}_{2}}{d t^{2}}=G m_{2} m_{1}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned} \quad \Longrightarrow \quad \frac{d \mathbf{v}}{d t}+G\left(m_{1}+m_{2}\right) \mathbf{r}=\mathbf{0}
$$

where $\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}$ and $\mu=G\left(m_{1}+m_{2}\right)$.
Then from

$$
\mathbf{r} \times \frac{d \mathbf{v}}{d t}=\frac{d}{d t}(\mathbf{r} \times \mathbf{v})=-\mu \mathbf{r} \times \mathbf{r}=\mathbf{0}
$$

we have

$$
\mathbf{h}=\mathbf{r} \times \mathbf{v}
$$

so that angular momentum is preserved.
The equations of motion are linear with constant coefficients and can be solved directly. We have

$$
\mathbf{r}=\cos \sqrt{\mu} t \mathbf{c}_{1}+\sin \sqrt{\mu} t \mathbf{c}_{2}
$$

where \mathbf{c}_{1} and \mathbf{c}_{2} are constant vectors. The motion is planar so, for convenience, we can assume that the orbit is confined to the x, y plane. Hence, the equations of motion are

$$
\begin{aligned}
& x=\cos \sqrt{\mu} t c_{11}+\sin \sqrt{\mu} t c_{21} \\
& y=\cos \sqrt{\mu} t c_{12}+\sin \sqrt{\mu} t c_{22}
\end{aligned}
$$

Next, solve for $\cos \sqrt{\mu} t$ and $\sin \sqrt{\mu} t$

$$
\cos \sqrt{\mu} t=\frac{\left|\begin{array}{ll}
x & c_{21} \\
y & c_{22}
\end{array}\right|}{\left|\begin{array}{ll}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{array}\right|} \quad \sin \sqrt{\mu} t=\frac{\left|\begin{array}{ll}
c_{11} & x \\
c_{12} & y
\end{array}\right|}{\left|\begin{array}{ll}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{array}\right|}
$$

and then eliminate the trigonometric functions by squaring and adding

$$
\left|\begin{array}{ll}
x & c_{21} \\
y & c_{22}
\end{array}\right|^{2}+\left|\begin{array}{ll}
c_{11} & x \\
c_{12} & y
\end{array}\right|^{2}=\left|\begin{array}{ll}
c_{11} & c_{21} \\
c_{12} & c_{22}
\end{array}\right|^{2}
$$

The result is an equation for the ellipse

$$
\left(c_{22} x-c_{21} y\right)^{2}+\left(c_{11} y-c_{12} x\right)^{2}=\left(c_{11} c_{22}-c_{12} c_{21}\right)^{2}
$$

or

$$
\left(c_{22}^{2}+c_{12}^{2}\right) x^{2}-2\left(c_{22} c_{21}+c_{11} c_{12}\right) x y+\left(c_{21}^{2}+c_{11}^{2}\right) y^{2}=\left(c_{11} c_{22}-c_{12} c_{21}\right)^{2}
$$

with the mass m_{1} at the center of the ellipse.

